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On the algorithm of degenerations and fundamental groups as a tool
to understand algebraic surfaces

Meirav Amram
(Shamoon College of Engineering, Ashdod, Israel)
E-mail: meiravt@sce.ac.il

The classification of algebraic surfaces in the moduli space has been an interesting question for many
years. Fundamental groups are very nice invariants in classification of algebraic surfaces.

We consider an algebraic surface X in some projective space. We project X onto the projective
plane CP?, using a generic projection, and get the branch curve S in CP2. The curve S is a cuspidal
curve with nodes and branch points, and it can tell a lot about X. We can get the presentation of the
fundamental group G of the complement of S in CP2. Group G does not change when the complex
structure of X changes continuously. In fact, all surfaces in the same component of the moduli space
have the same homotopy type and therefore have the same group G.

But it is difficult to describe S explicitly, and therefore it is not easy to write down a presentation
for G. To tackle this problem, we use a nice degeneration and regeneration algorithm. And together
with the use of some regeneration rules and the van-Kampen Theorem, we get the presentation of G.
We note that despite these techniques, we still cannot skip some algebraic work in order to determine
what G is.

If G is too complicated, we can calculate its quotient, which is the fundamental group Ggq of the
Galois cover of X, and also this quotient does not change when the complex structure of X changes
continuously. Some examples of such calculations appear in [1] and [2]. In [1] we prove that surfaces
with Zappatic singularity of type Ry have a trivial Ggq. And in [2] we divide surfaces with degree
6 degenerations to two sets: trivial or non-trivial Gg,. Moreover, some other works were done in
this research domain, for example for surfaces with different Zappatic singularities, and surfaces that
degenerate to non-planar shapes.

In the end of the talk I will present an output of a new computer algorithm, developed jointly with
U. Sinichkin (TAU, Israel). This algorithm provides the presentation of the fundamental group G,
when the branch curve S is given.
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Topological issues about the 6D ISST in Physics

Enzo Bonacci
(The Physics Unit of ATINER, Athens, Greece)
E-mail: enzo.bonacci@physics.org

The recent proposals of a three-directional time [6], of a time vector [7], and of a 6D spacetime
with SO(3,3) symmetry [5], have renewed the interest for the hexadimensional extension of Einstein’s
General Relativity formulated two decades ago via three-dimensional time [1, 2, 3]. We wish to enrich
the discussion about the hypothetical 6D geometrodynamics by giving a topological response to two
fundamental questions: 1) Why should the spacetime manifold require six dimensions instead of four?
2) Why should the two extradimensions be timelike? The 4D universe is supported by an intuitive logic:
in order to describe an event, we need to know where and when it is occurring, for a total amount of four
coordinates (three spatial and one temporal). Although reasonable, the current representation of the
spacetime’s intimate structure could be incomplete: we suggest adding the spin angular velocity among
its intrinsic properties. If we assume that each point of the continuum is a structureless rotating sphere
of null radius, we obtain a 6D inherently spinning spacetime (acronym ISST). In the ISSTconstruction,
we choose to neglect both the spinning magnitude and its direction (up or down), focusing only on
the plane of rotation (perpendicular to the spinning axis) as essential information about how an event
happens. The two parameters defining the orientation of the rotation plane of a spinning point are
interpreted as time extradimensions because they are surely not spacelike (i.e., not related to the
position in a fixed Ozyz reference frame) and, as surface measures, they are basically timelike [4]. Our
geometric analysis raises open questions ranging from the observation of a preferential arrow of time
to the role of temporal “hidden variables" in classic quantum phenomena.
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Characterized cycles integration on D-modules as solutions in
[L-holomorphic bundles

Francisco Bulnes
(IINAMETI A.C., Research Department in Mathematics and Engineering, TESCHA, Mexico.)
E-mail: francisco.bulnes@tesch.edu.mx

From a moduli space developed to establish the equivalences between different characteristic cycles
classes; where some are objects of a complex holomorphic bundle and others elements of a sheaf
of coherent D-modules, are determined co-cycles that represent solutions of the field equations in
the holomorphic context and Lagrangian submanifolds. The characteristic cycles of the category of
Lagrangian submanifolds are solutions to the field equation on IL-holomorphic bundles in the space-time
M (as complex Riemannian manifold) with singularities. We have the following technical lemma:

Lemma 1 (F. Bulnes). Characteristic cycles in C(G), as Lagrangians have their equivalent in a flat

space P44 (corresponding to the spertwistor space PT), as lines bundles in P. The cycles in C(G),
are solutions of the field equation on L-holomorphic bundles to the space-time M, which includes sin-
gularities.



One-dimensional Monotone Non-autonomous Dynamical Systems
and Strange Nonchaotic Attractors

David Cheban
(Moldova State University)
E-mail: david.ceban@usm.md

This work is devoted to the study of the dynamics of one-dimensional monotone non-autonomous
(cocycle) dynamical systems and strange nonchaotic attractors. A description of the structure of their
invariant sets, omega limit sets, Bohr/Levitan almost periodic and almost automorphic motions, global
attractors, pinched and minimal sets is given. An application of our general results is given to scalar
differential and difference equations. Below we give some of our results for discrete dynamical systems
generated by scalar difference equations.

Below we will use the terminology and notation from [1]. Let (Y,d) be a complete metric space
and (Y,Z,0) be a dynamical system on the space Y and C(Z x Y,R) be the space of all continuous
functions f : Z x Y — R equipped with the compact-open topology.

Consider the scalar difference equation

u(t+1) = flo(t,y)u), (yeY) (1)

where f € C(Y x Z,R). Denote by ¢(t,u,y) a unique solution of equation (1) passing through the
point v € R at the initial moment ¢t = 0.
From the general properties of solutions of equation (1) we have

©(0,u,y) =u for any u € Rand y € Y;

ot + 70, y) = (b o(m,0,y), o7, y)) for any £,7 € Zy, w e R and y € Y

the mapping (¢, u,y) — ¢(t,u,y) from Z, x R x Y — R is continuous;

if the function f is monotonically increasing in v € R uniformly with respect to y € Y, then
one has ¢(t,u1,y) < ¢(t,ug,y) forany t € Z, andy € Y.

o o

Taking in consideration a.—b. we can conclude that every equation (1) with monotonically increasing
right hand side f generates a monotone cocycle (R, ¢, (Y, T, o)) with discrete time Z .

Quasi-periodically forced monotone maps. An m-dimensional torus is denoted by 7™ := R™/27xZ"™.
Let (7™, T, o) be an irrational winding of 7™ with the frequency v = (v1,v2,...,vy) € R™. Consider
difference equation

u(t+1) = f(o(t,w),u), (2)
where f € C(T™ x R,R), w € T™ and (7™, T, o) is an irrational winding of 7™ with the frequency
v = (v1,v2,...,Vy) € R™. Denote by ¢(t,u,w) the unique solution of equation (2) passing through

the point u € R ate the initial moment ¢ = 0. If the function f is monotonically increasing in u € R
uniformly with respect to w € 7™, then the mapping ¢ : Zy X R x T™ — R ((t,u,w) — o(t, u,w))
possesses the properties a. — d.

Theorem 1. Let f € C(Z x R,R). Assume that the following conditions hold:

(1) there exist a solution @(t,uq, f) of equation
= f(t,x) (3)

bounded on Z ;
(2) the function f is strongly Poisson stable in t € Z uniformly with respect to u on every compact
subset of R.

Then the following statements hold:



(1) the w-limit set wy, (zo := (uo, f) € RX H(f)) of point xy is a nonempty, conditionally compact
and invariant set of skew-product dynamical system (X,Z4,m);

(2) Blwn,) = ¥ = H(f);

(8) the set wy, contains at least one but at most two minimal sets;

(4) if M C wy, is a minimal set, then every point x = (u, f) € M is strongly Poisson stable;

(5) if the function f is almost recurrent (respectively, recurrent) in t € Z uniformly with respect to
u on every compact subset of R and M C wy, is a minimal set, then every point x = (u, f) € M
is almost recurrent (respectively, recurrent);

(6) if the function f is almost automorphic in t € Z uniformly with respect to u on every compact
subset of R, then the minimal set M C wy, is almost automorphic.

Theorem 2. Assume that equation (3) is uniformly dissipative, then the following statements hold:

(1) the cocycle (R, @, (H(f),Z,0)) associated by equation (3) admits a compact global attractor |2]
I'={Il|l ge H(f)};

(2) a(g),B(g) € 1y, and hence, 1, C [a(g), B(g)], where

a(g) =inf{u € I} and B(g) :=sup{u € I };

(8) the scalar function B : H(f) — R, g — B(g) (respectively, o : H(f) = R, g — «(g)) is upper
semi-continuous (respectively, lower semi-continuous);

(4)

o(t, a(g), 9) = alo(t, g)) (4)
(respectively,

o(t,8(g),9) = Blo(t,g)) ) (5)
foranyt €Z and g € H(f);

(5) if the function f is strictly Poisson stable in t € Z uniformly with respect to u on every compact
subset of R, then there exists a residual subset G C H(f) such that for any g € G the solution
o(t,alg),g) (respectively, p(t,5(g),g)) of equation

o' =g(t,x) (9€GCH(f)) (6)
is compatible;

(6) Iy = [o(g), B(g)] for any g € H(f).

Remark 3. Suppose that a(gy) = 5(go) for some gy € H(f). Then a(g) = B(g) for a residual set
G C H(f) of g € G. This type of attractors are called Strange Nonchaotic Attractors (see, for example,
[3, Ch.I| and the bibliography therein).
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Holomorphically Projective Mappings of Kahler Manifolds
Preserving The Generalized Einstein Tensor

Yevhen Cherevko
(Department of Physics and Mathematics Sciences, Odesa National University of Technology 112,
Kanatnaya Str., 65039, Odesa, Ukraine)

E-mail: cherevko®@usa.com

Vladimir Berezovski
(Department of Mathematics and Physics, Uman National University of Horticulture 1, Institutskaya,
20300, Uman, Ukraine)
E-mail: berez.volod@gmail.com

Josef Mikes
(Department of Algebra and Geometry, Faculty of Science, Palacky University Olomouc
Kiiikovského 511/8, CZ-771 47 Olomouc, Czech Republic)
E-mail: josef .mikesQupol.cz

Yuliya Fedchenko
(Department of Physics and Mathematics Sciences, Odesa National University of Technology 112,
Kanatnaya Str., 65039, Odesa, Ukraine)
E-mail:  fedchenko_julia®@ukr.net

Holomorphically projective mappings which preserved the Einstein tensor
Ryij
n

E,'j = Rij —
were studied in [1]. Preserving the stress-energy tensor
Rgij

2

by conformal mappings was explored in [3], [5]. It’s worth for noting that in many classical issues e.
g. [2, p. 359], just the latter is referred to as the Einstein tensor.
Let us refer to

Sij = Rij —

inj déf Rij — nRgij. (1)
as the generalized Einstein tensor. Here k is a constant. Conformal mappings which preserving
the introduced tensor were explored in [6].

It is known that a covariant vector v; determining holomorphically projective mapping between two
Kahler spaces (V™,J,g) and (Vn, J,g) should satisfy the equations

1
Vig = ity — Va0 ]] + —— (Rij — Ryj). (2)
n+ 2
Here we denote by comma ”.” covariant derivative respect to the metric g of a space (V™,.J,g). The

affinor JI* is referred to as a complex structure. The structure is the same for both manifolds. The
symbols R;; and R;; denote Ricci tensors of spaces (V",J, g) and (V",J,g) respectively.
It follows from (36) that the deformation of the generalized Einstein tensor can be written as

Eij — inj = RZ‘]‘ — nﬁgij — Rij + HRgij. (3)
Taking account of the preservation requirement, i. e. @ij = ¢;;, from (36) we get

Rij — Rij = £Ry;; — kRgij. (4)
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Since (36) holds we can rewrite (36) as
K T—
Yig = Vit = Vel V] + m(}ggij ~ Rgy)). 5)

Let us recall that R = Ri]'gij .

Differentiating (36) covariantly with respect to z* and the connection T' which is compatible with
the metric g of the manifold (V™,J, g), alternating in j and &k and using the Ricci identity, we obtain
the conditions of integrability:

a k P R
YaWijy, = m(akRgij — 0jRgy — Ok Rgij + 0;Rgir), ©)

where

def kR
Wl < Rl + m((s?gik — 0pgij — I e + T Ty — 201 T3). (7)

Finally, we can summarize by the theorem

Theorem 1. If manifolds (V",J,g) and (V",J,g) are in holomorphically projective correspondence
and the mapping preserves the tensor €;; = R;; — kRg;;, then the function 1) generating the mapping,
must satisfy the system of PDE’s (36) whose conditions of integrability are (36). Also, the tensor Wz};k
1s preserved by the mapping.
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Some questions about virtual Legendrian knots

Vladimir Chernov
(Dartmouth College, Hanover, USA)
E-mail: vladimir.chernov@dartmouth.edu

Rustam Sadykov
(Kansas State University)
E-mail: rstsdk@gmail.com

Virtual Legendrian knots were introduced by Cahn and Levi and jointly with Sadykov we proved
the Kuperberg type theorem for them. We will discuss a few open questions about the virtual Leg-
endrian knots including the versions of the Ding-Geiges Theorem, Arnolds 4 cusp conjecture and the
applications of this to causality in spacetimes with the changing topology of the spacelike section in
the spirit of our works with Nemirovski.
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Morse-Smale flows in the Boy’s surface

Luca Di Beo
(Taras Shevchenko National University of Kyiv, Kyiv, Ukraine)
E-mail: dibeoluca@gmail.com

Morse-Smale (MS) dynamical systems are amongst the simplest possible dynamical systems, with
strong restrictions imposed on its critical points. In this thesis, I present a brief history of the de-
velopment of the theory, along with the introduction of important definitions, theorems and lemmas.
Moreover, I investigate MS systems in the Boy’s surface (P‘) with emphasis on optimal ones. A method
relying only on topological features has been used in order to classify MS systems in P‘. A review of
some topological properties of this space is presented in order to construct the necessary arguments
that allowed the discovery of this type of flow in P*.

At the time this thesis was written, there was no current work in the literature regarding the
classification of all optimal MS flows in P‘. Hence, my original contribution to knowledge here is the
finding of all 342 optimal MS flows in P, the finding of all 80 optimal Projective MS (PMS) flows
(Projective MS flows in P‘are those MS flows in P‘that can be extended to MS flow in RP?) in P,
and the exposure of a few non-optimal ones, as a preparatory path for future researchers, all up to
Symmetry.
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Morita equivalence of non-commutative Noetherian schemes

Yuriy Drozd
(Institute of Mathematics NASU)
E-mail: y.a.drozd@gmail.com

This is a joint work with Igor Burban, see [1].

The classical Morita theorem (see, for instance, [3, Ch. 18]) claims that the categories of modules
over rings A and B are equivalent if and only if there is a finitely generated projective generator P of
the category of right A-modules such that End4 P ~ B. Then this equivalence is established by the
functor P®4 —. If A and B are Noetherian, the same is the criterion of equivalence of their categories
of finitely generated modules. On the other hand, Gabriel [2] proved that two Noetherian schemes X
and Y are isomorphic if and only if the categories of coherent (or, which is the same, of quasi-coherent)
sheaves of Ox- and Oy-modules are equivalent. We present here a result which is, in some sense, a
combination and generalization of these two classical theorems.

Definition 1. (1) A non-commutative Noetherian scheme (NCNS) is a pair X = (X, Ox), where
X is a separated Noetherian scheme and Ox is a sheaf of Ox-algebras which is coherent as a
sheaf of Ox-modules. We denote by Coh X and QCoh X respectively the categories of coherent
and quasi-coherent sheaves of left Ox-modules.

Note that the category QCoh X is locally Noetherian and Coh X is its subcategory of Noetherian
objects. Therefore, they uniquely define each other.

(2) Two NCNS X and Y are called Morita equivalent if the categories Coh X and CohY (or, which
is the same, QCoh X and QCohY) are equivalent.

(3) A NCNS X is called central if Ox coincides with the center of Ox, i.e. for every point z € X
the ring Ox , is the center of the algebra Ox .

Proposition 2. For every NCNS X = (X, Ox) there is a Noetherian scheme Z and a morphism ¢ :
Z — X such that the NONS X = (Z,¢*Ox) is central and Morita equivalent to X. Moreover, the ring
of global sections T'(Z,Og) is isomorphic to the center of the category Coh X, i.e. the endomorphism
ring of the identity functor idgonx. If the scheme X is excellent, the morphism ¢ is finite.

Thus, studying Morita equivalence, we can only consider central schemes. The following result is an
analogue of the Gabriel’s theorem.

Theorem 3. If a NOCNS X = (X, Ox) is central, the scheme X is determined by the category QCoh X
(or, which is the same, by CohX) up to an isomorphism.

Actually, we give an explicit construction that restores X from QCoh X, namely, from the so called
spectrum of this category in the sense of Gabriel [2], i.e. isomorphism classes of indecomposable
injective objects. It is important that this construction also recovers affine open coverings of X.

Definition 4. A coherent sheaf of right Ox-modules P is called a local progenerator for X if for every
point x € X its stalk P, is a projective generator of the category of right Ox ,-modules.

Our main result if the following.

Theorem 5. Let X = (X,0x) and Y = (Y, Oy) be central NCNS. They are Morita equivalent if and
only if there is an isomorphism ¢ 1 Y — X and a local progenerator P for X such that ¢*(Endoy P) ~
Oy. Then this equivalence is established by the functor ¢*(P ®o, —).
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Note that even if X = Y, the isomorphism ¢ need not be identity. If it is so, this equivalence is
called central.

We also specialize this theorem for the case of mon-commutative curves, where it gives a sort of
“globalization” of the known results on the local-global correspondence from the theory of lattices over
orders (or integral representations of rings).

Definition 6. A non-commutative curve is a NCNS X = (X, Ox) such that X is excellent and of pure
dimension 1 and Ox is reduced, i.e. contains no nilpotent ideals.

We always suppose X central and connected (in the central case, it just means that X is connected).
We denote by Qx the sheaf of fractions of Ox and set Ox = Qx®p, Ox. We denote Q(X) =T'(X, Ox)
and Q(X) = I'(X, Ox). Note that Q(X) is a semisimple Q(X)-algebra and for every closed point z € X
the ring Ox, is an Ox g-order in this algebra. Since X is excellent, the set Sing(X) of such closed
points z € X that this order is not maximal is finite (it follows from [4, Ch. 6]).

Theorem 7. Let X = (X,0x) and Y = (X,Oy)) be two central non-commutative curves with the

same central curve X. They are centrally Morita equivalent if and only if the following conditions are
satisfied:

o the semisimple Q(X)-algebras Q(X) and Q(Y) are centrally Morita equivalent;

e Sing(X) = Sing(Y);

o for every v € Sing(X) the Oxg-orders Ox, and Oy, (or, which is the same, their mg-
completions) are centrally Morita equivalent.
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13

Some critical point results for Fréchet manifolds

Kaveh Eftekharinasab
(Institute of Mathematics of NAS of Ukraine)
E-mail: kaveh@imath.kiev.ua

Linking techniques (see [1]) provide significant results in critical points theory. We present linking
theorem and some of its corollaries, namely a mountain pass theorem and a three critical points theorem
for Keller C!'-functional on C!-Fréchet manifolds. We refer to [2] for the definitions.

Theorem 1 (Linking Theorem, [2]). Let M be a C'- Fréchet manifold endowed with a complete
Finsler metric p and let ¢ : M — R be a closed Keller C}-functional. Suppose {So, S,C} is a linking
set through v € C(So, T), C is closed and p(~y(Sp),C) > 0. Suppose the following conditions hold

(1) s = supy(gy) < infop — 1,

(2) ¢ satisfies the Palais-Smale condition at

— inf 1
c ggﬁggtp(v(m)), (1)

where H :— {h € C(S,T) : hlas, =7}
Then ¢ is a critical value and ¢ > i. Furthermore, if ¢ =i then Cr(p,c) N C # 0.

The theorem yields the following corollaries:

Theorem 2 (Moun@in Pass Theorem, [2]). Suppose that xo,x1 € M, xy belongs to an open subset
UCMandx ¢ U. Let o : M — R be a closed a Keller C}-functional satisfying the following
condition:

(1) max{p(xo), p(21)} < infor p(z) :— i;
(2) ¢ satisfies the Palais-Smale condition at

c:— inf sup @(h(t)), (2)
heC yejo1]

where C :— {h € C([0,1], M) : h(0) = =g, h(1) = z1}.
Then c is a critical value and ¢ > 1. If ¢ =1 then Cr(p,c) NU # 0.
Theorem 3 (Three Critical Points Theorem, [2]). Let M be a connected Fréchet manifold and ¢ :

M — R a closed a Keller C}-functional satisfying the Palais-Smale condition at all levels. If ¢ has
two minima, then @ has one more critical point.

We apply the mountain pass theorem and the Minimax principle to prove the following theorem
which provides the sufficient conditions for a local diffeomorphism to be a global one.

Theorem 4. [2] Let M, N be connected C'- Fréchet manifolds endowed with complete Finsler metrics
§, p respectively. Assume that ¢ : M — N is a local diffeomorphism of class Keller CL. Let T : N —
[0, 00] be a closed Keller CL-functional such that Z(x) = 0 if and only if x = 0 and T'(z) = 0 if and
only if x = 0. If for any g € N the functional ¢4 defined by

¢q(x) = L(p(x) — q)

satisfies the Palais-Smale condition at all levels, then ¢ is a Keller Cl-global diffeomorphism.
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On partial preliminary group classification of some class of
(1 + 3)-dimensional Monge-Ampere equations. One-dimensional
Galilean Lie algebras.

Vasyl Fedorchuk
(Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine,
79060, 3-b Naukova St., Lviv, Ukraine)
E-mail: vasfed@gmail.com

Volodymyr Fedorchuk
(Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine,
79060, 3-b Naukova St., Lviv, Ukraine)
E-mail: volfed@gmail.com

A solution of many problems of the geometry, theoretical physics, astrophysics, differential equations,
nonlinear elasticity, fluid dynamics, optimal mass transportation, one-dimensional gas dynamics and
etc. has reduced to investigation of classes of Monge-Ampere equations in the spaces of different
dimensions and different types. At the present time, there are a lot of papers and books in which those
classes have been studied by different methods.

Let us consider the following class of (1 + 3)-dimensional Monge-Ampére equations:

det (uy) = F (x0, 1, T2, T3, U, g, U1, U2, u3) ,

0%u ou
6%8@’ Uy = B’ wv,a=0,1,2,3.

Here, M (1,3) is a four-dimensional Minkowski space, F' is an arbitrary real smooth function.

For the group classification of this class we have used the classical Lie-Ovsiannikov approach. At
the present time, we have performed partial preliminary group classification of the class under consid-
eration, using one-dimensional nonconjugate Galilean subalgebras of the Lie algebra of the Poincaré
group P(1,4).

In my report, I plan to present some of the results obtained concerning with partial preliminary
group classification of the class under consideration.

where w = u(z), = = (zo,z1,22,23) € M(1,3), uu
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On packing and lattice packing of Minkowski-Chebyshev balls

Nikolaj Glazunov
(Glushkov Institute of Cybernetics NASU, Kiev)
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The Minkowski hypothesis was formulated in [1] and refined in [2, 3, 4]. Regarding the concepts of
the geometry of numbers, see [5].

Let
Dy ={(z,y), p>1} CR? (1)
be the 2-dimension region:
|z[P + [yl < 1. (2)
Let
A(p,o) = (7‘+U)(1+7‘p)7%(1+0'p)7%, (3)

be the function defined in the domain
1
M:oo>p>1,1<0<0,=(2-1)7, (4)
of the {p,o} plane, where o is some real parameter; here 7 = 7(p,0) is the function uniquely
determined by the conditions
AP+ BP =1, 0< 7 < 7p,

where
1 1
A=A(p.o)=(1+77) 75— (1+07) 7, (5)

B=DB(p,o)=oc(l+0c") rr(l+17) 7, (6)
Tp is defined by the equation

21—l =147, 0< 7, < 1. (7)

Proposition 1. The function A(p, o) in region M determines the moduli space of admissiblel lattices
of the rigion D,, each of which contains three pairs of points on the boundary of D,.

Proposition 2. Let A(D,) be the critical determinant of the region |z|P + |y[P < 1. Let A;E,O) and
Aél) be two D,-admissible lattices each of which contains three pairs of points on the boundary of D,

and with the property that (1,0) € AZ(,O), (=27 1/p 2-1/p) ¢ AZ()l). Under these conditions the lattices are
uniquely defined.

Let d(AI(,O)),d(A,(})) be determinants of the lattices. Let Al()l) = A(p,1) = 47 T A}(}O) =

1—7p°
A(p,op) = 30p-
Proposition 3. d(AY)) = A(p,a,), d(AY) = A(p, 1).

Remark 4. For example in the case p = 2 the lattice Aéo) has the determinant d(Ag))) = ¥3 and is

2
defined by generators a; = (1,0), a2 = (%, @)
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Theorem 5. [6]
_ A(p71)71<p§2)p2p0)
ADy) = { A(p, o), 2 < p < po;

here po is a real number that is defined unique by conditions A(pg, op) = A(po, 1), 2,57 < py < 2,58.

Definition 6. In two-dimensional case we will call geometric figures of the form |z|P+|y[P < R, R > 0,
with p > pg the two-dimensional Minkowski-Chebyshev balls.

In cases of dimension grater then two, when the constant pg is unknown, we will call geometric figures
of the form |z1|P + |z2|P + |x3|P + - - - + |zn|P < R, R > 0, the n-dimensional Minkowski-Chebyshev balls
if p is a sufficiently large.

We investigate packing and lattice packing by equal Minkowski-Chebyshev balls of n-dimensional
Euclidean spaces and also of corresponding spheres.

Proposition 7. Let Z? be the integer lattice in R? with a point in the origin. Then the density of
packing by two-dimensional open Minkowski-Chebyshev balls over the lattice Z* tends to unity as p
tends to infinity

Conjecture 8. Let A be the integer (n > 2)-dimensional lattice in R™ with a point in the origin. Then
the density of packing by n-dimensional open Minkowski-Chebyshev balls over the lattice A tends to
unity as p tends to infinity

Problem 9. Is there an analogue of Theorem 5 in the case of geometric bodies of the form

|21 [P 4 |@ol? + |23|P + - - 4 |z P < 1,0 > 2,

Problem 10. If there exists an analogue of Theorem 5 in the case of geometric bodies of the form
|21 [P 4 |z2f? + |23 + - - - + |zaP < 1,0 > 2,

what is the value of the constant pg .
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Unbounded order and norm convergence of some operators on
Banach lattices

Omer GOK
(Yildiz Technical University, Faculty of Arts and Sciences, Mathematics Department, Esenler,
Istanbul, TURKEY)
E-mail: gok@yildiz.edu.tr

Let X be a Banach space. An operator T : X — X is said to be demicompact if, for every bounded
sequence (z,) in X such that (x, — Tx,) converges to x € X, there is a convergent subsequence of
(). For example, each compact operator is demicompact. But, the converse is not true in general. If
the identity operator I : X — X on the infinite dimensional Banach space X, then —I is demicompact
but it is not compact. We say that an operator T' : X — X is weakly demicompact if, for every
bounded sequence (x,) in X such that (z, — Tz, ) weakly converges in X, there is a weakly convergent
subsequence of (z,). Every demicompact operator is weakly demicompact. An operator T : X — Y
between Banach spaces is called Dunford-Pettis if it carries weakly compact subsets of X onto compact
subsets of Y. Equivalently, for each weakly null sequence (z,,) we have | Tx,| — 0 as n — co. An
operator 7' : X — X is called unbounded demi Dunford-Pettis if, for every sequence (x,) in X such
that z, — 0 in o(X,X’) and (2, — Tzy,) unbounded norm converges to 0 as n — oo, we have (z,,)
unbounded norm convergent to 0. For example, for the identity operator I : [*° — [°°, —I is unbounded
demi Dunford-Pettis operator.

Theorem 1. Let E¥ be a Banach lattice. Every Dunford-Pettis operator T : E — E is unbounded demi
Dunford- Pettis.

In this study, we characterize the operators on Banach lattices that under which conditions they
satisfy unbounded demicompactness property.
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An explicit formula for the A-polynomial of the knot with Conway’s
notation C(2n,4)
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An explicit formula for the A-polynomial of the knot with Conway’s notation C'(2n,4) up to repeated
factors is presented.

The main purpose of the paper is to find the explicit formula for the A-polynomial of the knot with
Conway’s notation C(2n,4) up to repeated factors. Let us denote the knot with Conway’s notation
C(2n,4) by Ts, and the A-polynomial of the knot with Conway’s notation C(2n,4) by As,. The
following theorem gives the explicit formula for the A-polynomial of T5,,.

Theorem 1. The A-polynomial Ag,, = Agn(L, M) is given explicitly by

Ao = pan (u)pZTL ( _u>

where
son (Lalimyg-al ot =i a2yl 2L i ey q) =2l v
X (=2LMS + LM* — LM? — M* + M2z + M2 — 2) |
< (LM% + L+ M2+ 2 +1)' (=3LM?> + L+ M2 + 2 — 3)L'T
) x (1) (LM? 4+1) —=2LM?* + L+ M? + z — 2) if n >0,
pan() = E:;i?(t%iJ_")Q*QVZIJ*i(A[Q)*L%J*QL%%J*¢*"(LAIQ_kl)*éf2V§1jfran
X (=2LMS + LM* — LM? — M* + M2z + M2 — 2) | 5]
< (LM? + L+ M2 + 2+ 1) (=3LM* + L+ M? + » - 3)L'7']
X ((=1)" (=2LM* 4+ L+ M?+ 2z —2) — LM? — 1) ifn <0,
and

w=/BL2M4 — 202M?2 + L2 — 2LM* + 120 M2 — 2L + M* — 2M2 + 5.
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FIGURE 1.1. A two bridge knot with Conway’s notation C(2n,4) for n > 0 (left) and
for n < 0 (right)
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The classical web geometry ([1],|2],[4]) studies invariants of foliation families with respect to pseu-
dogroup of diffeomorphisms. Thus for the case of planar 3-webs the basic semi invariant is the Blaschke
curvature ([3]). It is also curvature of the Chern connection ([4]) that are naturally associated with a
planar 3-web.

Let D C R? be a connected and simply connected domain in the plane, equipped with symplectic
structure given by differential 2-form Q = dx A dy in the standard coordinates on the plane.

Remind that a 3-web in the domain is a family of three foliations being in general position. We’ll
assume that these foliations are integral curves of differential 1-forms w;, i = 1,2, 3, and write

W3 = (w1, w2, w3) ,
where w; € Q! (D) are such differential 1-forms that w; Aw; # 0 in D, if i # 3.

Definition 1. We say that two planar 3-webs W3 and /Wv/g given in domains D and D respectively are
symplectively equivalent if there is a symplectomorphism ¢ : D — D, such that ¢ (W3) = Ws.

Proposition 2. Let W3 = (w1, ws,ws3) and Wg = (W1, ws,ws3) be two planar 3-webs in domains D and
D respectively given by normalized
wi + ws + ws = 0. (1)

differential forms. Then a diffeomorphism ¢ : D — D establishes a symplectic equivalence of 3-webs if
and only if

¢* (Wi) = ews (i),
where (0,¢) € Ag X Za, and Ag C S3 is the subgroup of even permutations and Zo = {1,—1}.

In our case normalization (1) and the above proposition shows that the Chern form ~ is itself
symplectic invariant of 3-webs.
Let’s write down ~ in following form

V= Tiw + Tawe + T3W3,
where functions x; € C*° (D) are barycentric coordinates of v, i.e.
1 +x2+x3=1.

Then we have

dw; = (.1‘3 — .%‘2) w1 N\ wa,
dwy = (xl —333) w1 N wa,
dws = (.IQ —xl)wl N wo.

Using the second normalization (1) condition we’ll rewrite these relations in the following form

dwi = MNQ, i=1,2,3, 2)
Al = 13— X2, A2 =11 — X3, \3 = w2 — 77,
and
.I‘l:%(1+)\2—)\3),$2:é(1+)\3—)\1),$3:%(14—)\1—)\2).
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Theorem 3. Functions

Ji o= M+ A3+,
Jo = NS+ AN+ A3,
Ju = (A=A (A =A%) (A3 —X3)

Js = AN

are symplectic invariants of 3-webs.
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Let M be a compact connected surface and P is a real line R or a circle S'. Denote by F(M, P)
the space of smooth functions f € C°°(M, P) satisfying the following conditions:

1) the function f takes constant value at 9M and has no critical point in OM;
2) for every critical point z of f there is a local presentation f,: R? — R of f near z such that f,
is a homogeneous polynomial R? — R without multiple factors.

Let X be a closed subset of M. Denote by D(M, X) the group of C*°-diffeomorphisms of M fixed
on X, that acts on the space of smooth functions C*°(M, P) by the rule: (f,h) — f o h, where
he DM, X), f e C®(M,P).

The subset S(f,X) ={h € D(M,X) | fo h= f}is called the stabilizer of f with respect to the
action above and O(f,X) = {foh |h € D(M,X) is orbit of f. Denote by D;q(M, X) the identity
path component of D(M, X) and let S'(f, X) = S(f) N Dia(M, X).

Homotopy types of stabilizers and orbits of Morse functions were calculated in a series of papers
by Sergiy Maksymenko, Bohdan Feshchenko, Elena Kudryavtseva and others. Furthermore, precise
algebraic structure of such groups for the case M # S2,T? was described in [1]. In particular, the
following theorem holds.

Theorem 1. [1]| Let M be a connected compact oriented surface except 2-sphere and 2-torus and let

f € F(M,P). Then mS (f,dM) € B, where B is a minimal class of groups satisfying the following
conditions:

1) 1€ B;
2) if A,B € B, then A x B € B;
Sif A€ Bandn > 1, then Ay, Z € B.

Note that a group G belongs to the class B iff G is obtained from trivial group by a finite number of
operations X, ,Z. It is easy to see that every group G € B can be written as a word in the alphabet
A={1,Z,(,), X,2,3,U,... }. We will call such word a realization of the group G in the alphabet A.

Denote by (1(G) the number of symbols Z in the realization w of group G. The number 5 (G) is
the rank of the center Z(G) and the quotient-group G/[G, G] (Theorem 1.8 [2]). Note, this number
depends only on the group G, not the presentation w. Moreover, 81 (G) is first Betti number of O(f).

Edge of I'y will be called external if it is incident to the vertex of I'y that is corresponding to a
non-degenerate critical point of f or non-fixed boundary component of M with respect to the action
of S'(f,W) for f-adapted submanifold X which contains W = S' x 0. Otherwise, it will be called
internal. Denote by #Orbi,:(M, W) the number of orbits of the action of S'(f, ") on internal edges
of Ff\X .
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Theorem 2. Let M be a disk D? or a cylinder C = S* x [0,1] and f € F(M, P). Then
40rbiny (M, W) = Bi(m0S'(f, 0M)),
where W = OM if M = D? or W = S' x 0 if M is a cylinder.
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On diffeological principal bundles of non-formal pseudo- differential
operators over formal ones
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Let E be a complex vector space over a compact boundaryless manifold M. In this communication, G
denotes either the group of non-formal, invertible bounded classical pseudodifferential operators or the
group of invertible elements of the algebra of non-formal, maybe unbounded, classical pseudodifferential
operators of integer order, equipped with a given diffeology which makes classical composition and
inversion smooth. H is the normal subgroup of G of operators which are equal to I'd up to a smoothing
operator. We also assume that the group H is regular for its subgroup diffeology. We analyze the short
exact sequence

Id—- H— G — G/H — Id,

where G/H is understood as a group of formal pseudodifferential operators, along the lines of the
theory of principal bundles, where, G is the total space, G/H is the base space and H is the structure
group.

Problem 1. There is actually no local slice G/H — G, or in other words the principal bundle
G — G/H has no known local trivialization.

Therefore, one has to consider what has been called by Souriau as "structure quantique" in [4]
and diffeological connections along the lines of Iglesias-Zemmour [1] in order to interpret the so-called
smoothing connections described in [2] (that we generalize here for S! to any M) in terms of horizontal
paths. More precisely, we show:

Theorem 2. Any smoothing connection in the sense of 2| defines a diffeological connection along the
lines of [1].

and we explain how one can understand the notion of curvature of covariant derivatives, with values
in smoothing operators, in terms of curvature of a connection 1-form on G — G/H.

Then, we specialize to M = S, by giving more examples of smoothing connections, and explain in
this context how the Schwinger cocyle is, in cohomology, a first Chern form of the principal bundle
G — G/H for a given smoothing connection. We finish the exposition of the results by showing that
higher Chern forms #r(2*) of this connection with curvature € define closed 2k—cocycles on the Lie
algebra of G, and that the cocycle obtained for k& = 2 is non trivial, along the lines of [3].

As a conclusion, we give open problems related both to our construction and to the interpretation
of index-like problems on pseudodfferential operators.
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Let G and H be two groups acting on path connected topological spaces X and Y respectively.
Assume that H is finite of order m and the quotient maps p: X — X/G and ¢ : Y — Y/H are regular
coverings. Then it is well-known that the wreath product G ! H naturally acts on W = X™ x Y, so
that the quotient map r : W — W/(GU H) is also a regular covering. We give an explicit description of
m1(W/(GUH)) as a certain wreath product m (X/G) g, m1(Y/H) corresponding to a non-effective action
of m(Y/H) on the set of maps H — m1(X/G) via the boundary homomorphism 0y : m(Y/H) — H
of the covering map gq.

Such a statement is known and usually exploited only when X and Y are contractible, in which case
W is also contractible, and thus W/(G  H) is the classifying space of G H.

The applications are given to the computation of the homotopy types of orbits of typical smooth
functions f on orientable compact surfaces M with respect to the natural right action of the groups
D(M) of diffeomorphisms of M on C*°(M,R).
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The geometrical properties of degenerations of curves and surfaces
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In this talk, we will mainly discuss the topology and arithmetic properties of degenerations of curves
and surfaces. First, we investigate the influences of the base points of cubic pencils on the Mordell-Weil
groups in this part. We pay attention to 8, 7 ,6 and 5 base points in general position for such cubic
pencil, and classify these cubic pencils. And we give the following theorem:

Theorem 1. This is the main theorem (taken from [2]).

Given n (= 8,7,6,5) points in general position in P?, S : sHy+tHy = 0, [s,t] € P! is a cubic pencil
with n (= 8,7,6,5) simple base points. Then, the Mordell-Weil groups of the fibrations are isomorphic
to two types respectively:

3 3 2 4
By: y* =2 +2) pit)+ Y qt' +1°, y* =27+ 227+ 2> pt) + > at' +° (1)
=0 =0

i=0 i=0
4 2 3
EY: =2 talpo+pit+£0)+ > qt', P Htoy =2+ pit)+ > qt' —t*  (2)
i=0 i=0 i=0
2 2 2 3
B P+ tfy=a"+2) pt)+ O _at’), P +tay=2"+2) pt)+ (O _at) (3
i=0 i=0 i=0 i=0
DY y? 4 psay = 2 + patx® + (pst® + pot®)z + pet* + 17 (4)
A Del Pezzo surface X is either P! x P! or the blow-up of P? in m (m = 1,---,8) points in general

position. The degree d of X is defined to be d = 9 —m. As an application, we give a new proof of the
number of (—1) curves in Del Pezzo surfaces.

Theorem 2. The number of (—1) curves in Del Pezzo surfaces of degree 1,2,3,4 is 240, 56, 27 and
16 respectively.

In the second part, we talk about the surfaces of minimal degree in P". In fact, the degree of such
surface is n — 1. The fundamental group of Galois cover of surface is an important invariant of the
moduli space of such surfaces. In [1], we use the tools of degenerations of surfaces to prove the following
theorem:

Theorem 3. The Galois cover of the surface of minimal degree is simple-connected and general type.

In the end, we give an open question:

Question: It is well known that the fundamental groups of most surfaces of general type are non
commutative. But it is not easy to find concrete examples of such surfaces. Let aj, be a series of integral
number whose limit is infinity. How to give a series of surfaces of degree a; whose the fundamental
groups of Galois covers are all non commutative?
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Nilpotent aaproximations in the Goursat Monster Tower
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In the paper "Kumpera—Ruiz algebras in Goursat flags are optimal in small lengths” (J. Math.
Sciences 126 (2005), 1614 -1629) we conjectured that the two notions ’strongly nilpotent’ (Definition
3 up there) and ’tangential’ (Definition 6 up there) are but synonyms in the world of Goursat flags.
Now a concrete road map to a possible proof of that long-standing conjecture is being proposed.
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The role of topological invariants in the study of the early evolution
of the Universe
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Questions of the evolution of the Universe, the nature of forces and physical processes at an early
stage of the evolution of the Universe are the most relevant in theoretical high-energy physics. The
evolution of the Universe is connected with phase transitions in vacuum, represented by alternating
minima and maxima of the potential. The discovery of the Higgs boson led to the problem of a
metastable vacuum in the mechanism of electroweak symmetry breaking and confirmed the hypothesis
that a vacuum decay took place. Such a transition in vacuum between two minima can be represented
in D-brane language. D-brane approach is realized through Planck brane in the left minimum of
potential and TeV brane in the right minimum of potential. Every D-brane presented in terms of
vector bundle is characterized by topological invariant, [1]. So, the calculation of topological invariants
informs us about the possibility of phase transitions between different states of vacuum.

We considered two universal bundles o3 : (Va(R?),p, G2(R%)),aS : (Va(RS),p, Go(RS)) which are
isomorphic to vector bundles, v3,7$ correspondingly. Taking into account the theorem on the existence
of a vector bundle V,,)41(R™) — S™~1, [2] for n > 4, and using the fact

PRn_l n n—1

proz =S
we presented the exact sequence

0 = m3(Vi(RY)) = m(VA(R®)) = Z.

We used the equivalence of homotopic groups

m(Vi(RY) = m(V2(R)

ma(Vi(R%)) = ma(Va(R?))
according to [2] with F'= R,c=1,k = 1.

Using the fact that D-branes can be represented as a vector bundles with a base - a sphere and
using the embedding of spheres, S* C S, we observe a transition from one solitonic state in the form
of D5-brane to D4-brane with the corresponding equidistant set of energy levels. The obtained result

signals about the possibility of phase transitions in the form of vacuum decay from Planck brane to
TeV brane.

REFERENCES

[1] Paul S. Aspinwall. D-Branes on Calabi- Yau Manifolds, arXiv:hep-th/0403166.
[2] D.Husemoller. Fibre bundles, McGraw-Hill Book Co., New York-London-Sidney, 1966.



30
O-spheroids in metric and linear normed spaces

Illia Ovtsynov
(Taras Shevchenko National University of Kyiv, Kyiv, Ukraine)
E-mail: iliarkov@gmail.com

Definition 1. Open O-spheroid with rank n, or O-spheroid with rank n, in a metric space (X, p) with
a metric p, n € N, is a set

A={ze X |plz,z1)+ -+ p(z,2,) < a},

where z1,...,x, are different fixed points of the space (X, p), called the foci, and a is a fixed positive
number, called the distance. We can get a respective definition in linear normed spaces.

Definition 2. Closed O-spheroid with rank n in a metric space (X, p) with a metric p, n € N, is a set
A={z e X|p(z, 1)+ -+ plz,zn) < af,

where z1,...,x, are different fixed points of the space (X, p), called the foci, and a is a fixed positive
number, called the distance. We can get a respective definition in linear normed spaces.

Remark 3. S,(z1,...,x,;a) is an open O-spheroid with rank n with the foci in points z1, ..., z, and
the distance a. If we talk about open O-spheroid understanding what namely O-spheroid we discuss,
we note it S,,.

Definition 4 (|11, c. 193|). Border of (open or closed) O-spheroid with rank n, or n-ellipse with the
foci x1,...,x, and the distance a, in a metric space (X, p) we name the set

A={z e X |p(z,z1)+ -+ p(z,z,) = a}.
Definition 5. Focal closeness of our O-spheroid with rank n equals to

T(Sp(z1,...,2n50)) == 1<Iin<i]1_1<np(xi, zj).

Definition 6. Focal remoteness of our O-spheroid with rank n equals to

D(Sp (21, Tn5a)) == 1<nil<ajx<np(wuxj)-

Definition 7. If all the foci belong to O-spheroid, then it is called a multicentered one.

Theorem 8. Let’s assume we have an O-spheroid Sy (x1,...,xn;a) in a metric space (X, p) with a
metric p, n > 1. If it is multicentered then
a
Sp) < .
m(Sn) n—1
Theorem 9. Let’s assume we have an O-spheroid S, (x1,...,xn;a) in a metric space (X, p) with a
metric p, n > 1. If we have that
a
(S, < —,
(Sn) n—1

then this O-spheroid is multicentered.

Theorem 10. Either all open and closed O-spheroids in arbitrary metric space (X, p) with a metric
p, or their borders, are bounded sets.

Remark 11. All closed O-spheroids in any Euclidean metric space (R™, p) with a standard metric p
are compact sets.
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Definition 12. Metric space (X, p) with a metric p is called conver, if next conditions are satisfied:
1) X is a linear vector space;
2) {z,y,2} C XVa € [0;1] we get:

plaz + (1 —a)y, z) < ap(z,z) + (1 — a)p(y, 2).

Theorem 13. If (X, p) is a convex metric space with a metric p, then V{x1,...,z,} C X Va > 0 open
O-spheroid Sy (z1,...,Tp;a) is a connected set.

Remark 14. All O-spheroids in linear normed spaces are connected sets.

Theorem 15. If (X, p) is a convex metric space with a metric p, then V{x1,...,x,} C X Ya > 0 open
O-spheroid Sy (z1,...,Tp;a) is a connected set.

Theorem 16. Let’s assume that S, (x1,...,x,;a) is a non-empty O-spheroid in a conver metric space
(X, p) with a metric p. Then its border is equal to its boundary.

Definition 17 ([7, c. 236|). Fermat—Torricelli point for fixed points {x1,...,z,} is such point 7 € X

that Vz € X:
n n
k=1 k=1
Definition 18. Voronoi radius of O-spheroid S, (z1,...,2,;a) we call number
R(Sy) := sup inf p(x,y).
xeSn yE@Sn
Theorem 19. Let’s assume that Sy (21, . .., 2Tn;a) is a non-empty O-spheroid in any Euclidean metric

space (R™, p) with a standard metric p, meanwhile T is a Fermat—Torricelli point for its foci. Then

next inequality is correct:
n

a— Z p(fv I‘k)

k=1

— = < R(S,).
———— <R(S)
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Infinitesimal deformations of surfaces of negative (Gaussian curvature
with a stationary Ricci tensor
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In [1] it was proved that every simply connected surface S € C* non-zero Gaussian and middle
of curvatures admits infinitely small (in.sm.) first-order deformations with a stationary Ricci tensor
whose tensor fields have the representations

T = (Pgab]; T = (Padak + Macaﬁdga

where functions p (wl, xQ) and ¢ (wl, xQ) of class C? satisfy the following second-order partial differ-
ential equation:
(do‘ﬁgoa) 5 +2Hyp = ,ua’kco‘ﬁdlg + fia ™’ (d’g) L (1)

) )

Let S be a surface of negative Gaussian curvature. Then (1) is an equation of hyperbolic type, which
in asymptotic lines takes the form

@12 + do1 + Loz + co = f(u) (2)

where d, [, ¢ are known functions of the point S, u (xl, £E2) is predefined function.

For equation (2), consider the Darboux problem: We will look for such an integral that takes certain
values on the characteristics 2! =z}, 22 = 22; ¢ (ml, x%) = Azh), ¢ (33(1), x2) = 7(2?).

Then each pair of functions will A(z!), 7(2?) match the only solution ¢(z!, 2?) equation (2) with
known right side [2].

Fair

Theorem 1. Every simply connected surface of negative Gaussian curvature of the class C* and
without umbilical points admits ain.sm.deformations of the first order with preservation of the Ricci
tensor. In this case, the strain tensors are expressed in terms of a preassigned function of two variables
and two arbitrary functions of the class C3, each from one variable.

It should be noted that many phenomena in mechanics, physics, and biology are reduced to the
study of hyperbolic equations. To describe these phenomena completely for hyperbolic equations, the
Darboux problem is posed.
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Structures of optimal flows on the Boy’s and Girl’s surfaces
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For a closed oriented surface, the Morse-Smale flows with a minimum number of fixed points (optimal
ms-flow) has a single source and sink, is defined by a chord diagram, and can be embedded in R? [3].
For the projective plane, the optimal flow has three critical points, but it cannot even be mapped on
any immersion in R3. The simplest immersions with one triple point are Boy’s and Girl’s surfaces
[1, 2]. Each of the surfaces has a natural stratification (cellular structure). It consists of one O-strata,
three 1-strata (A4, B,C) and four 2-strata. In the Boy’s surface 2-strata are set by their boundaries:
A, B, C, ABAT'CAC~'BCB™'. On the Girl’s surface, the boundaries of 2-strata are as follows: A,
B, ABA'CB~!, AC-'C—-1BC.

We describe all possible structures of flows on these surfaces with respect to the homeomorphism
(isotopy) of the surface using separatrix diagrams and methods of papers [4, 5, 6, 7].

For the flows with one isolated point and a minimum number of separatrices, there are 18 (108)
structures per Boy’s surface (with one separatrix) and 3 (6) structures per Girl’s surface (without
separatrices).

For optimal ms-flows on the surfaces as stratified sets, there are 342 (2004) and 534 (1058) flows,
respectively. These flows have by 4 fixed points: O-strata and by one point on each 1-strata.

There are 80 (438) and 118 (230) different structures for the ms-flows on the projective plane that
are mapping on these surfaces. The flows have by 3 sources, 3 sinks and 5 saddles (0-strata has triple
counting and points from 1-stratas have double counting).
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About solvability of the matrix equation AX = B over Bezout
domains
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Let R be a Bezout domain with identity e # 0, i.e. R is an integral domain in which every finite
generated ideal is principal. Further, let Ry, , denote the set of m x n matrices over R, and GL(n,R)
be the set of n x n invertible matrices over R. In what follows, I, is the identity n x n matrix, 0,
is the zero m x k matrix, d;(A) € R is an ideal generated by the i—th order minors of the matrix
AeRpyp, i =1,2,...,min{m,n}.

Let A € R,,, and B € R, be nonzero matrices. Consider the nonhomogeneous matrix equation

AX = B, (1)

where X is unknown matrix in R,, ;. Denote by Agp = [A B] € Ry, n+r the extended matrix of the
linear equations (1). It is known (see [1], [3], [4], [6]) that the equation (1) over a Bezout domain R is
solvable if and only if rank A = rank Ap = r and d;(A) = d;(Ap) for all i =1,2,... 7.

The problem of solvability of the equation (1) has drawn the attention of many mathematicians (see
[1]-[12] and references therein). This is explained not only by the theoretical interest to this problem
(111, [3], [4], [6], [8]-[11]), but also by the existence of numerous applied problems connected with the
necessity of solution of linear matrix equations (|2], [5], [7], [12]). It may be noted, that the equation
(1) over Bezout domains is important in automatic control theory [2].

1. On application of the Hermite Normal Form. In the Bezout domain R we fix a set of
non-associated elements R. Every non-associated element a € R we associated with a complete system
of residues modulo ideal (a). Let A € Ry, ,, and rank A = r. Further, we assume that the first row of
the matrix A is nonzero. For the matrix A there exists W € GL(n,R) such that

Hl Oml,nfl
AW = HA _ H2 0m2,n—2 _ [H(A) Om,n—r]
H, Omhnfr
s . . o h1 o h21 hQ
is a lower block-triangular matrix, where H(A) € Ry, ,, Hy = .| € R 1, Hy = . .| € R, 2,
hrl e hr r—1 hr
,H, = y N ’* . € R, and m; +ma+---+m, = m. The elements h; belong to the
set of non-associated elements R for all i = 1,2,...,r. Moreover, in the first rows [hil N hi]
of the matrices H;, i > 2, the elements h;; belong to a complete system of residues modulo ideal (h;)
for all 7 =1,2,...,4 — 1. The lower block-triangular matrix H4 is called the (right) Hermite normal

form of the matrix A and it is uniquely defined for A (see [3]).

In this parch we propose necessary and sufficient conditions of solvability for the equation (1) over a
Bezout domain in terms of the Hermite normal forms of m x (n + k) matrices [A 0, %] and [A BJ.
A method for finding its solutions is also given. In what follows, we assume that the fest row of the
matrix A is nonzero.

Theorem 1. Let A € R, , and B € Ry, ;. The matriz equation AX = B is solvable over a Bezout
domain R if and only if the Hermite normal forms of matrices [A Om,k] and [A B} are coincide.
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It is easy to see that matrix equation (1) is solvable over a Bezout domain R if and only if the
matrix equation H(A)Y = B is solvable over R. Let Yy € R, ;, be the solution of H(A)Y = B. Then

Yo

for arbitrary matrix P € R, the matrix Xp = w1 [P

} is a general solution of equation (1).

Yo
Omfr,n
expression Xog = T'Xp, where T' € R,, ,. Thus, Xp is the right divisor of X for an arbitrary matrix
P € R, k. Given the solution Xy, we determine all possible ranks of other solutions of the equation
(1), i.e. rankB < rankXp < n + rankB — rankA.

2. A method of matrix transformations. In this part we apply matrix transformations for
established conditions under which the equation (1) is solvable.

Let A € Ry, and B € R,;, 1, be nonzero matrices and let rank A = r > 1. For A there exist matrices

U € GL(m,R) and V € GL(n,R) such that UAV = 0 ¢ Oor’nfr ] , where C' € R,.,.. It is clear

that det C' = ¢ # 0. In what follows C* = Adj C means the classical adjoint matrix of the matrix C,
i.e. C*C = cl,. Based on the above, we obtain the following theorem.

Theoretically speaking, the solution Xy = W1 } of equation (1) can be written as the matrix

Theorem 2. The matriz equation AX = B is solvable over a Bezout domain R if and only if UB =
[O D ] , where D € R, 1, and C*D = cG, where G € R, ..

m—r,k

If the equation AX = B is solvable, then for arbitrary matriz Q € Ry,—,x the matriz X = U~! [g]

s a general solution of equation AX = B.

From Theorem 2 we obtain the following comment. Let A, B € R,,, be nonzero matrices and let
rank A < n. Suppose the matrix equation AX = B is solvable and X¢g € R,,,, is its general solution.
Then AX = B has solutions )N(Z €Rypn, i =1,2,..., such that Xg = )~(iTi, where T; € Ry, 5.

Presented results above can be extended to linear nonhomogeneous equations over commutative
rings of a more general algebraic nature.
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Here are the names of (almost all) predefined theorem-like environments.
Theorem 1. For given f € H and g € H the problem

Gy 0=h oeren !

has a unique solution v € C([0,T), H) N C*((0,T), H) given by
u=etg+ ATVI — e f (2)

(JA. Goldstein, Semi-groups of linear operators and applications, Ozford university, press New York.
1985.).

Lemma 2. ForO<a <1 etp>0, on a les estimations suivantes :

1 - ) 1.
supp>1(1 — W)(l +A0)2 < mazx(1, TP, T )maz(a, (lﬂ(ﬁ)) ?) (3)
6716_/\”Ti 1N 7.
«9U10n>11_’_T%ez,\n:r1 < max(1, Ty l)ﬁal =1,2 (4)
ﬁn N
SUPn>1 (1 + a2)\%62>‘nT1))\n < mam(l, )\1 )a, (5)
With
1
’y = 1 — e*>\1(T27T1) (6)
Problem 3.

Let H be a separable Hilbert space with the inner product (.;.) and the norm ||.|| and let A: H — H
be a positive self-adjoint linear operator with a compact resolvent. Consider the following final value
problem:
{ u(t) + Au(t) = f,  0<t<Ty )
’U,(Tl) = \111
where 0 < T1 < T and V¥ is a given function on H Our purpose is to identify the initial condition

u(0) and the unknown source f from the overspecied data u(Ty) = Wy, Uy € H
Hence, the inverse problem can be formulated as follows: determine f and g such that

SR 7

from the data

u(Ty) =W
{ uETlg —, ©)
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Corollary 4. Let f et g the solutions of (1) , fg et gg be the modified Tikhonov approximations, Let
z/)‘f and fz/zg be the measured data at T and Ty satisfying (9), If the regularization parameter is chosen

2 0 2
as o = (E—l) @12 and o = (E—Q) ®2+2) spectively then, the following error estimates hold respectively:

yat
1 = 5201 < a1, TP TP yma () 77, ——— ) a1, Ty ) () AP T2
(ln(El)pl +2)m
(10)
2+p2
lo = 641 < maa(0, TP~ T ma(( o) 7, ) (1T ) ) B

Un(E?)P2+—2)p2
(11)
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The generalized Bochner technique (see, for example, [1]) allows to broad to the noncompact but
compete Kahlerian spaces some well-known theorems of holomorphically projective unique definability
that have been proved previously for the compact ones (see, for example, [2]). Thus, the next theorems
are true.

Theorem 1. Complete connected noncompact Kahlerian C"-space K™ (n > 2, r > 4) with positive
defined metric tensor and the Einstein tensor that doesn’t equal to zero, that satisfies the recurrent
conditions

. . 1 v ) ) . .
Ti(joléf';,)mhgmjghlE.l.k — ETizﬁ) (5Zgum + Flem) Ti(j/;cl)gm]ghlE.Z.k + TZ_(]i?)szkl + flwi(jc'lf’)m‘/mGlm7

where
af o pf af af af o
Tijkl = ”5(iRj)kl + gl(iTj)k — gk(iTj)l — Fl(iF;STW + Fk(iF;;Tw ,

B _ B
Ty =6 Ry — R, 7
FJ’ — components of tensor of complex structure, R;; — components of Ricci tensor, I, — components

of Einstein tensor of the space K™; W4k YWiklm _ components of some contravariant tensors, ", "
denotes the corresponding covariant differentiation, doesn’t admit non-trivial (different from affine)
holomorphically projective mappings on the whole.

Theorem 2. Complete connected noncompact Kahlerian C"-space K™ (n > 2, r > 4) with positive
defined metric tensor and the Einstein tensor that doesn’t equal to zero, that satisfies the recurrent
conditions (f) () ()
[ hi kl [&f ilk «a il

Pil,khg ‘B :Pil,k ST+ PySY, (1)

where 5 5 5
(0%
Py" =6/ R} — o, R,

R;; — components of Ricci tensor, E;; — components of Finstein tensor of the space K"; Sitk gl
components of some contravariant tensor, " " denotes the corresponding covariant differentiation,
doesn’t admit non-trivial (different from affine) holomorphically projective mappings on the whole.

Recurrent conditions (1) may also be transformed to the more general form.
Examples of Kahlerian spaces of considered types are known.
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The topologies on an n-element set with weight & > 2"~! (k is the number of the elements of the
topology) are called close to the discrete topology. In [1] all Tp-topologies have been listed using the
topology vector, an ordered set of the nonnegative integers (aq, o, ...,ay), a; is one less than the
number of the elements in the minimum neighborhood M; of the element z;. In [2] Tp-topologies on an
n-element set with the vectors (0, ...,0, ap—1,a5) and (0,...,0,1,1, ay,) in the case My,—1 N M, o =0
have been investigated. These Ty-topologies are consistent with close to the discrete topology on (n—1)-
element set with the vectors (0, ..., 0, a,—1) and the vector (0, ...,0,1,1) in the case M,,_1 N M, _o = (.
The question about Tp-topologies which are consistent with close to the discrete topology on (n — 1)-
element set with vectors (0,...,0,1,...,1), 1 < k < n — 3, where all n — 1 — k two-element minimum

k
neighborhoods have only one common point, remains unresolved. This work we found the weight of
these Ty-topologies.

So, the vector of Tp-topologies has the form: (0,...,0,1,...;1, ), 1 <k <n—-3,2<a,<n-1

—— ——
k n—k—1
and ", 41 My = {z1}. The following cases are possible for the minimum neighborhood M, of the
element x,,:
1. ﬂ;l;lkﬂ My N My, = {z1}, s0 My, = {21, -, d, Tr—(ay,—d)» > Tn—1, Tn }. The general formula for

an—d
the weight has the form |7| = 272 4 2k=1 4. 9k=d 4 gk=d . (gn—h—(an—d+1) _ 1)
2. ﬂ?n;lkﬂ M, N M,, = (. The general formula for the weight has the form || = 2772 + 2k=1 ¢
9k—an + ok—(an+1) (ankfl _ 1).
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Let @Q be an m element set. A ternary operation f defined on Q is called invertible and the pair
(Q; f) is a quasigroup of the order m, if for every a, b of @ the terms f(z,a,b), f(a,z,b), f(a,b,x)
define permutations of Q. To each ternary quasigroup (Q; f) of the order m there corresponds a Latin
cube of order m, i.e., a 3-dimensional array on m distinct symbols from @, each of which occurs exactly
once in any line of the array.

A triplet (f1, fo, f3) of ternary operations is called orthogonal [1], if for all aq, a2, a3 € @ the system

fi(z1, 22, 23) = a1,
fa(x1, 22, 23) = ag,

f3(z1, 22, 23) = a3

has a unique solution, i.e., superimposition of the corresponding cubes gives a cube such that every
triplet of elements of ) appears exactly once in it.

Geometric interpretation of orthogonality is its relationships with geometric nets. This application
is well-studied for binary operations and the respective k-nets, projective and affine planes (see for
example [2], [3]). Relationships between t-tuples of orthogonal n-ary quasigroups of order m and
(t, m, n)-nets were studied in [4], [5], [6]. The respective nets have the same combinatorial and algebraic
properties.

For every permutation o € Sy a o-parastrophe °f of an invertible ternary operation f is defined by

Uf(ivla,xza,ﬂﬁzw) = Tyg = f(mlaanx?)) = Z4.

In particular, a o-parastrophe is called:
e an i-th division if o = (i4) for i = 1,2, 3,;
o principal if 40 = 4.
Therefore, each ternary operation has at most 4! = 24 parastrophes; among them 3! = 6 principal
parastrophes. An invertible operation and the respective quasigroup are called assymetric if all its
parastrophes are different. A quasigroup is called totally parastrophic orthogonal (top-quasigroup),

if each triplet of its different parastrophes are orthogonal. Binary assymetric top-quasigroups were
studied in [7], for ternary case the following statements are true.

Theorem 1 ([8]). A quasigroup (Q; f) is medial if and only if there exists an abelian group (Q;+)
such that

f(x1, 22, 3) = @121 + P22 + @373 + a, (1)

where v1, w2, w3 are pairwise commuting automorphisms of (Q;+) and a € Q.
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Theorem 2. Let (Q; f) be a medial ternary quasigroup (Q; f) with (1) and 11, 72, 73 € S4. The
parastrophes ™' f ;. T2f  f are orthogonal if and only if the determinant

Pin P2n P30
Plry P21 P3nry

Plrs P23 P33
is an automorphism of the group (Q;+), where w4 :=J and J(x) := —x.

Note, that the pairwise commuting automorphisms @1, s, @3, J generate a commutative subring
K of the ring End(Q;+). Let 7/ := (v1,v2,v3) be a triplet of injections of the set {1,2,3} into the set
{1,2,3,4}. The polynomial

Yy Y211 Y3y
di(71,72,73:74) = | Ve Vove  Vavs
Yvs  V2vs  V3us
over the commutative ring K will be called invertible-valued over a set H C K, if all its values are
automorphisms of the group (Q;+) when the variables 1, 72, 73, 74 take their values in H.

Theorem 3. A ternary medial quasigroup (Q; f) with (1) is a top-quasigroup if and only if each
polynomial dz is invertible-valued over the set {¢1, p2, 3, P4}, where pyq := J.

Theorem 4 ([9]). A ternary medial assymetric top-quasigroup over a cyclic group of the order m
exists if and only if the least prime factor of m is greater than 19.
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We begin with the following important result due to Donaldson [Do| for Kéhler, and Xi [Xi] for
general Hermitian complex manifolds with boundary:

Theorem 1. Let X be a compact complex manifold with non-empty boundary 0X, g be a Hermitian
metric on X and £ be a holomorphic bundle on X. Let h be a Hermitian metric on the restriction
Elox. There exists a unique Hermitian metric H on £ satisfying the conditions

AgFH =0, H|5X = h,
where Fyy € A%2(X,End(€)) denotes the curvature of the Chern connection associated with H.

Note that the map H +— Ay Fy is a non-linear second order elliptic differential operator, so the
system AgFy = 0, H|y5 = h can be viewed as a non-linear Dirichlet problem. The theorem of
Donaldson and Xi states that this non-linear Dirichlet problem is always uniquely sovable.

Note also that the analogue statement for closed manifolds (i.e. in the case X = )) does not hold.
Indeed, the classical Kobayashi-Hitchin correspondence states that, for a holmorphic bundle £ on a
closed Hermitian manifold (X, g), the equation AyFy = 0 is solvable if and only if deg,(£) = 0 (which
is a topological condition if ¢ is Kéhlerian) and £ is polystable with respect to g (see |[LT]).

Recall that a unitary connection V on a Hermitian differentiable bundle (E,H) on X is called
Hermitian Yang-Mills if A,Fy = 0, F&? = 0. In the classical case dim¢(X) = 2 — which plays a
fundamental role in Donaldson theory — these conditions are equivalent to the anti-self-duality condition
FS =0.

v
In [Do| Donaldson shows that Theorem 1 has important geometric consequences:

Corollary 2. Let X be a compact complex manifold with non-empty boundary, g be a Hermitian metric
on X and (E, H) be a Hermitian differentiable bundle on X. There exists a natural bijection between:

(1) the moduli space of pairs (€,0) consisting of a holomorphic structure £ on E and a differentiable
trivialization 0 of E|y%,

(2) the moduli space of pairs (V,T) consisting of a Hermitian Yang-Mills connection on (E,H)
and a differentiable unitary trivialization T of E|y%.

In other words, the moduli space of boundary framed holomorphic structures on E can be identified
with the moduli space of boundary framed Hermitian Yang-Mills connection on (E, H).

In the special case when X is the closure of a strictly pseudoconvex domain (with smooth boundary)
in C", Donaldson states the following result which gives an interesting geometric interpretation of the
quotient C*(0X,GL(r,C))/O>(X,GL(r,C)) of the group of smooth maps X — GL(r,C) by the
subgroup formed by those such maps which extend smoothly and formally holomorphically to X:

Corollary 3. Let O>®(X,GL(r,C)) be the group of smooth, formally holomorphic GL(r,C)-valued
maps on X, identified with a subgroup of C*°(0X,GL(r,C)) via the restriction map.

There exists a natural bijection between the moduli space of boundary framed Hermitian Yang-Mills
connections on the trivial U(r)-bundle on X and the quotient C*(0X,GL(r,C))/O>(X,GL(r,C)).
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The idea of proof: Taking into account Corollary 2, it suffices to construct a bijection between
the quotient C*°(0X, GL(r,C))/O>(X,GL(r,C)) and the moduli space of boundary framed holomor-
phic structures on the trivial differentiable bundle X x C". The construction is very natural: one
maps the congruence class [f] of a smooth map f : 9X — GL(r,C) to the gauge class of the pair
(the trivial holomorphic structure on X x C", f). The main difficulty is to prove the surjectivity of the
map obtained in this way. This follows from the following existence result:

Proposition 4. Let X be the closure of a strictly pseudoconvex domain (with smooth boundary) in
C" and & be a smooth, topologically trivial holomorphic bundle on X. Then & admits a global smooth
trivialization on X which is holomorphic on X.

The statement follows using Grauert’s classification theorem for bundles on Stein manifolds and the
following extension theorem, which is proved in |Do| only for n = 2:

Proposition 5. Let X be the closure of a relatively compact strictly pseudoconves domain (with smooth
boundary) in C" and € be a smooth, topologically trivial holomorphic bundle on X. Then & extends
holomorphically to an open neighborhood U of X in C".

In my talk I will explain the idea of proof of the following general extension theorem (see [T]):

Theorem 6. Let M be a complex manifold, X C M an open submanifold of M whose closure X
has smooth, strictly pseudoconvexr boundary in M. Let G be a complex Lie group, m : Q — M a
differentiable principal G-bundle on M and J a holomorphic structure on the restriction P :— Qlx-

There exists an open neighborhood M' of X in M and a holomorphic structure J' on Q| which
extends J.

The proof uses methods and techniques introduced in [HiNa| and [Cal].

In the special case when M = C" and G = GL(r,C) one obtains as corollary Proposition 5 (and
hence Corollary 3) in full generality. Moreover, one also obtains the following generalization of this
corollary:

Theorem 7. Let G = K€ be the complexification of a compact Lie group K, X be a compact Stein
manifold with boundary and g be a Hermitian metric g on X. The moduli space of boundary framed

Hermitian Yang-Mills connections on the trivial K-bundle on (X, g) can be identified with the quotient
C>®(0X,G)/0*(X,G).
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We briefly survey joint works with Ryoto Tange, Hyuga Yoshizaki, and Sohei Tateno.

Twisted Iwasawa invariants of knots [1]. Let K be a knot in S? with 7 = m1(S® — K) and let
X, — X = 8% — K denote the Z/nZ-cover for each n € Z~g. Let p be a prime number and let m € Z
with p{m. Let p: mg — GLy(Oy) be a representation over a finite extension Oy of the p-adic number
field Q, and let A,(t) denote the twisted Alexander polynomial. Then we have the following.

Theorem 1. Let (K,p,m,p) be as above. Then there exists some A\, u,v € Z such that for any n > 0,
[Hy (Xynpr, p)] = P99 holds,

For each (p, K, p), there exists some m such that A = degA,(t). Hence for each K, there exists some
(p, p,m) such that A coincides with the genus of K.

For each (p, K, p), the set of ii’s and X’s determines if A,(t) is monic in Oplt].

Example 2. (1) The \’s of the lifts pfol : mx — SL2(O) of the holonomy representation of the figure
eight knot K = 4.

(2) For any SLo-representations of the twist knots J(2,2k) (k € Z), we have u = 0. We may expect
that if k£ # 0,1, then there exists some p of J(2,2k) with u > 0.

Weber’s class number problem for knots [2]. Weber’s class number problem for number fields
is unsolved for more than 200 years. Yoshizaki [3] recently pointed out that the sequence of the class
numbers converges in the ring of p-adic integers Z,. In the knot theory side, we obtain the following.

Theorem 3. Let K be a knot in S® and let p be a prime number. Then the sizes of the p-torsion
subgroups of Hi(Xpn;Z) converges in Zy. The limit value is given by the roots of unity that are close
to the roots of the Alexander polynomial Ak (t).

Example 4. The limit values for the torus knot Ty (a,b € Z; coprime) and the twist knot J(2, 2k)
(keZ).

Iwasawa invariants of the Zpd-covers of links [4]. Cuoco—Monsky gave a variant of the Iwasawa
class number formula for Zpd—extension of number fields and pointed out the existence of the term
O(1). In our side, we have the following.

Theorem 5. Let L be a d-component link in a rational homology 3-sphere M and letY, - X = M —L
denote the Z/nZd—cover. Then there exists some A, such that the size of p-torsion subgroup of
Hy(Y,,Z) is given by Pl "+ +0) phere O(1) is the Bachmann—Landau notation. If M is an
integral homology 3-sphere, then the Zpd-cover is Greenberg, namely, O(1) is a constant.

Example 6. The values p, A, and O(1) of Solomon’s link 4% and the twisted Whitehead link Way,_4
(k € Z). We have a link with O(1) # 0 and a link with any p € Z>¢.

REFERENCES

[1] Ryoto Tange and Jun Ueki. Twisted Twasawa invariants of knots, preprint, 2022. arXiv:2203.03239

[2] Jun Ueki and Hyuga Yoshizaki. On Weber’s class number problem for knots, preprint, 2022.

[3] Hyuga Yoshizaki, A New Continued Fraction Ezpansion and Weber’s Class Number Problem, preprint, 2020. arXiv:
2010.06399

[4] Sohei Tateno and Jun Ueki. Jwasawa invariants of the Zz‘f—covers of links, preprint, 2022.



45
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Iosepxust V2 xmacy C¥,k > 1 y npocropi Minkoscbkoro 'Ry HasHBaeThCS Npocmopoeonodibron
(waconodibror, i30mponroto), SIKINO JOTUIHA IJIONIMHA JI0 Hel B KOYKHIN TOUIIl € IIPOCTOPOBOIOIGHOIO
(wacomoi6Hor0, i30TpONHOI0). BymeMo posrisgaTH Taki JBOBEMIpHI moBepxHi mpocTopy 'Ry abo Taki
00J1acTi Ha 1UX MOBEPXHSAX, Y SKUX TUII JOTUIHOI IJIOMUHA B KOXKHIi#l Touri omud i Toi camuit. [lpn
IPACCMAHOBOMY BimoGparkenHi mosepxui V2 B rpaccManis muorosun PG (2,4) orpumMaeMo 2paccmaro-
suti 06pas mosepxui V2. I'paccmanis 06pas TpOCTOPOBOTIONGHOT (Tacomoi6HOT) ABOBUMIPHOT TOBEpXHi
npocropy 'Ry € IBOBUMIPDHIM IIiIMHOIOBHIOM MHOTOBHJLY 9acONOOHNX (IIPOCTOPOBONOIIGHIX) ILIO-
muH [2]|. [H1yKoBaHa MeTpHUKa IpacCMaHOBOrO 06pa3y MoxKe OyTH 3HAKOBH3HAYEHOI, 3HAKOHEBU3HAE-
HOIO 200 BUPOJI2KEHOIO, & 3HAYUTH I'PACCMAHIB 00pa3 MoxKe OyTH JIBOBUMIPHOIO ITPOCTOPOBOIOIIOHOIO,
qacoIo/1i0HOI0 ab0 I30TPOITHOI TOBEPXHE0. 3’SICYEMO MUTAHHSI PO TUIT TPACCMAHOBOTO 00pa3y MmoBep-
XOHBb 3 IIOCKOIO HOPMAJIBLHOIO 3B’ sI3HICTIO.

TTonaTTS II0CKOT HOPMAJILHOI 3B’ I3HOCTI T JIMHOTOBHLY PUMAHOBOI'O MHOTOBH LY Oy10 BBesieno E.Kapranom
[1]. TIiqMHEOrOBH I 3 JIOCKOIO HOPMAJIBHOIO 3B SI3HICTIO € IIIMHOTOBUIAMU 3 HYJTbOBUM T€H30POM CKPY-
Ty. BasK/IMBOIO BJIACTUBICTIO TIOBEPXOHD 3 ILIOCKOIO HOPMAJILHOIO 3B SI3HICTIO € iICHYBaHHS KOODAMHATHOL
CITKH, BiJTHOCHO KOl Iepiry Ta oOuJiBi Jpyri KBaJpaTudai popMu MOKHA, OJITHOYACHO 3BECTH JIO Jlia-
roHajibHoro Bujty. g KoopauHaTHa CiTKa € CiTKO JiiHill KpuBuHU. [loBepXHi 3 MJIOCKOI0 HOPMAJIBHOIO
3B’SI3HICTIO Ta 1X I'PacCMaHOBi 00pas3u y mnpoctopi MiHKOBCHKOIO MAIOTh I J0/IaTKOBI BJIACTHBOCTI:

1) sIKmo rpaccManoBmit 06pas yaconoiGHol nosepxui V2 C! R4 3 m10CK0OI0 HOPMAJIBHOIO 3B A3HICTIO
HEBUPOJXKEHNUI, TO BiH € TacOIoIiOHOI0 TOBEPXHEIO;

2) HeBUPOJKEHU{T rpaccMaHOBUil 06pa3 MPOCTOPOBONOIIGHOT TIOBEPXHI 3 MIJIOCKOI HOPMAJILHOIO 3B SI3HICTIO
MO2Ke 6yTH ab0 ITPOCTOPOBOTIOIIOHO0, 00 TaCOIO/IIOHOI0, a00 130TPOITHOIO TOBEPXHEIO;

3) THII HEBUPOJZKEHOI'O I'PACCMAHOBOIO 00pasy rileprioBepxHi V2 nesIkoro TPEBEMIPHOTO IiIIPOCTO-
py mpocropy 'Ry criBmajae 3 Tumom mosepxai V2.
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Cepe/r pobiT 10 reofe3nIHuM BifoOparKeHHSIM TICEBIOPIMAHOBUX IIPOCTOPIB 0COO/IMBE Miciii 3aiiMae
pobota 1896 poky T. Jlei-UeriTu, B sAKiit BiH, BUXOJASIYN 3 PIBHSIHb JUHAMIKH, C(OPMYIIOBAB IOCTA~
HOBKY 3aja4di Ta orpumaB oCcHOBHI piBHstHHs [1]. OcobimBicTio poGOTH € BUKOPUCTAHHSI TEH30PHHUX
METO/IiB.

[Ticist ToTO, SIK TEH30PHI METOM JTOCTI/IKEHHST 3affHSIIN JTOMIHYIOU MO3UIl B JudepeHIiaabHiil reo-
metpil, I. Bein, JI.IL. Eitzenxapt, B.®. Karan, ['.I. Kpyukosu4, A.C. CosomoBHikoB Ta inmii mobyry-
BaJId CTPYHKY TEOPIIO T'e0JIE3NIHUX BiT0OOparKeHb ICEBIOPIMAHOBUX IIPOCTOPIB, iHBapiaHTHY BiJIHOCHO
BUOOPY CHCTEMHU KOODJIMHAT.

HoBwuit mommrosx 1151 Teopist orpumaa micist pobit M.C. CuHiokoBa, sIKAii 3BiB 3a1a9y 10 JOCIIiTXKEH-
Hs JIiHIfHOT cucreMu judepeHnialbHUX PIBHAHD [2].

Bzaemuo omHO3HaYHA BiAIOBIAHICTH MiXK TOUYKAMHU IICEBIOPIMAHOBHUX IIPOCTOPIB V,, 3 METPUIHUM
TEH30POM (5 Ta V,, 3 METPUYHIM TEH30POM §ij Ha3UBAETHCS I'€OJI3UIHUM BiJJOOparkeHHAM, AKIIO IIpU
Hill KOXKHa Teojie3udHa Jiinig V,, mepexouTb B IeoJe3uYHy JIHIIO V.

IIceBnopimanis npoctip V,,, B AKoMy icHye TeH30D Aj; iy, i, Takwii, mo A; 4, 4, ; = 0, HasuBaroTs A-
cumerpuaauM. TyT Koma “,” 3HaK KoBapiaHTHOI OXigHO1 110 3B’ sa3H0CTi V,,. ['eonesntano A-cumerpuannm
HA3WBAEMO IICEBJOPIMaHIB IIPOCTIP, B IKOMY yMOBa, A-CHMETPUYHOCTI BUKOHYETHCSI JIjIs KOBAPIaHTHOL
MTOXI/THOT TI0 3B’SI3HOCTI T€OJE3WTHO BiMOBIIHOTO JaHOMY MPOCTOPY V), TCEBIOPIMAHOBOTO MPOCTOPY
v, [3].

Bokpema, AKIIo Jyig Tensopa Pivdi ncesopimanosoro npocropy V;, Bukonyerbes ymosa ViR = 0
(ryT V 3HaK KOBapiaHTHOI IOXi/IHOI 110 3B’3HOCTI Vn), TO TaKi#l MPOCTip HABUBAEMO Ie0/Ie3UIHO Pivuui
CUMETPUYIHUM. SIKIIO 1151 yMOBa BUKOHYETBHCsI JIjisi TeH30pa PiMaHa, TO mpocTip Mae Ha3BY Ie0/e3MYHO
CUMETPUYHUIA.

Jlosesieno, 1o He icHye reome3nvno Piudi cuMeTpuyHHUX MpOCTOPIB BiAMIHHUX Bij mpocTtopiB KitH-
miTeiiHa, a TaKo¥XK, IO HE ICHYE T'e0/Ie3NTHO CUMETPUYHHUX IICEBIOPIMAaHOBIX IIPOCTOPIB BIIMIHHUX Bis
ITPOCTOPIB CTAJI0I KPUBUHU.

Takum unHOM, Teojie3nvHO Pivdi cuMeTpUYHI Ta I'e0JIe3UTHO CUMETPUYHI ITPOCTOPU iICHYIOTD JIUIIE
TOJi, KOJIM BOHU pocTtopu EifHIITEfiHA Ta MPOCTOPU CTAJIO] KPUBUHE BiIOBITHO.
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HocamimpkyBasucst kKBasi-reojieandsi Bijmobpazkennsi [1| ysarajbHeHO-pEKYPEHTHUX IPOCTOPIB Hapa-
Goniunoro tuny [3] (Vi gij, FY") i (Vi, ;). Ocnosni pismsimus Takoro sizoGpaskenns B cyMicmiii 3a
Bi06paykeHHAM cucTeMi KoopaumHAT (2!) MaioTh BurasAm [3]

Rl h h h
Lyi(x) = T(z) + ()05 + o (2) F (o),
J J ) )
Fj=—Fji, Fj=gF}, Fij=—Fj, Fij=73;F},
h _
Fa Fia -
h  _ ph
Fag) = Faty
—=h . LT . .
L F?j - KommoueHTn 00’ekTiB 3B’ sa3n0cTi V), 1 Vi) 94, @i - HMesaKi KoBeKTOpH;
roxigaol B Vi,.
dAxmo mudepenmniaabHi piBHAHH i adinopa HaOyBalOTh BUTIIALY F (};,j) =F (};qj), MU Ha3UBaEMO

7 - 3HAK KOBapiaHTHOI

. h _ h .
a(IHOPHY CTPYKTYPY y3araJbHEHO-PEKYPEHTHOI, a npu F’ =1 - PEKYPEHTHO-T1apabOJIi THOIO.

Mu BBazkaeMo, 10 y3arajbHEHO-PEKYPEHTHA CTPYKTYPa iHTErPOBHA i KBazi-reoie3udHe BimoOpazke-
HHsI 30epirae€ BEKTOP y3arajbHeHOI peKypeHTHocTi [3], or:ke B mpocropi (Vn,yij) ns adinopa Fih
BUKOHYIOTBHCSI CIiBBITHOIIIEHHS

iy = Flitj),
”|” - 3HaK KoBapiaHTHOI TOXitHOT BigHOCHO 3B’ 13HO0CTI [ B V.
[To6ymoBano reomeTputHi 00’€KTH, iHBapiaHTHI BiJTHOCHO KBa3i-Te0Ie3MTHOTO BiM0OpaskeHHsT y3araabHEHO-
PEKYPEHTHHX IMPOCTOPIB MapaboiTHOr0 TUITY, & TAKOXK PEKYPEHTHO-MapaboiaHux mpoctopis. HaBomu-
ThCsl PsIJ, YMOB Ha I1i 00’€KTH, 110 MPU3BO/ISITH JI0 TOT'O, 10 y3araJbHEeHO-PEeKyPEeHTHUI 1IpocTip napabo-

JIMHOTO THUIy HOIyckae mapabomiuny K-crpykrypy, mis skoi F (f;fj) = 0, a peKypeHTHO-TIapabOJIiTHI]

e

POCTIp JIOIIyCKA€ KeJIEPOBY CTPYKTYDPY HapaboJiiHOIO THILY.
Busueno creriasnbal Tunm KBas3i-reofe3ntHIX BimOOpaXKeHb y3araJbHEHO-PEKYPEHTHUX MIPOCTOPIB,
10 36epirafoTh JiesiKi TEH30PU BHYTPIIIHHOIO XapaKTepy.
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ABTOoMOpdHI pyHKIIIT Ta aaredbpm ABOBUMIPHUX CUHTYJISIPHUX
iHTerpaJpbHIX ONepaTopiB
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Hexait D — BimkpuTuit of@HIaHEI KPYT KOMILIEKCHOI Tomman. B rinsbeprosomy mpocropi L2 (D)
BBEJIEMO HACTYIIHI OIEPATOPU:

K — nobpe Bigomuii oneparop beprmana;

W = W, — yuitapuuii (i3oMeTpudHUIt) OlepaTOp 3BasKEHOTO 3CYBY, YTBOPEHHI mapabosidHuM abo
rinepboJiigHuM JAPOOHO-TIIHIHHUM TIepeTBopeHHsIM g € G kpyra D B cebe, ne G — HecKiHUYeHa IUKJIIIHA
KOMYTaTHUBHA T'PYIa, MOPOJKEHA IIEPETBOPEHHSIM ¢, 3 O/IHi€I0 abo JBOMa HEPYXOMUMU i TPAHUYHUMU
TOYKAMU BCiX 3CYBIB, IO JIE2KATh Ha, aDCOJIIOTI.

Hexaii, nami, 2 noznadae C*-anrebpy 6e3 3CyBy, sKa ITOPOJPKEHA OIIEPATOPAMH, IO MAOTh BUTJIST
A=a(z)]+b(z)K + L, ne I — onunnunwmii, L — koMuakTHuii, koedinienru a, b € apromopdaumu GyH-
KIisIME, TOOTO 3a70BOJILHAIOTE yMoBaM a(g(z)) = a(z), b(g(z)) = b(z), HenepepBHUME Ha piMaHOBIiH
IIOBEPXHI I'PYIN.

Busuaernca C*-anrebpa B, mopo/zkena yciMa omepaTopaMu BATJISLY

+oo
B= Y AW/
j=—00
ne Aj; — oneparopu anrebpu 2.
Bussnsernes, mo anrebpa B e posmupennam anaredpu 2l 3a jomnomororo oneparopis scysy Wy, ne
g € G. Bynyerbcs anrebpa CHMBOJIIB Ta BCTAHOBJIIOETHCST KpUTepiit hpeIrosbMOBOCTI It OIEPATOPIB
C*-anrebpu ‘B.
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KanoHiuHi KBa3i-reoae3amyHi BioOpakeHHS ICEBI0-PiMaHOBHUX
IIPOCTOPIB 3 PEKYPEHTHO-TIAPAOOJIIYHOIO CTPYKTYPOIO
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B [3] mu mocmimkysanu jaudeomopdizmu meeBI0-pIMAHOBUX MIPOCTOPIB, K1 € KBa3i-reoIe3nIHuME
BimoGpaxkenusmu [1| 1 BogHOuac Maiizke-reomesuanumu 2-ro tuiy [2]. OcHoBHI PIBHSHHS TAKOro Bij-
obpaenns (Vy,gij, FI') i (Vin,9;;) B cymicuilt 3a Bimobpaxkennsam cucremi xKoopaunat (z°) MaioTh
BuIs 3]

() =T" Rl Fh
i (2) = T35(x) + ()6} + o) Fj (2),
Fij=—Fji, Fj=gialj, Fij=-Fj, Fij=7giF},
Ry =
h _ h
Fag) = Fadp»

—=h . LT . .
e I’Z-j, I‘?j - KomnoneHTr 00’eKTiB 3B’ sa3H0CTi V) 1 V), ¥, @; - ekl KoBeKTOpU;
roxigaol B Vi,.

AdiropHy CTPYKTYpY, I/ KOl JudepeHIiajbii piBHIHHSI HAOYBAIOTH BUTIALY F (};J) =F (};qj), MU

7. - 3HAK KOBapiaHTHOI

HA3WBAEMO y3araJbHEHO-PEKYPEHTHOIO, & IpU th] = Fihqj - PEKyPEeHTHO-TapabOIiITHOO.

Y BumaJKy, KOJM B OCHOBHUX DIBHSIHHSIX KBa3i-reo/le3nvHoro Bigobpazkenus 1;(x) = 0, itoro nasu-
BAIOTh KAHOHIYHUM.

Orpumana JiHiitHa (popMa OCHOBHUX PiBHIHb KAHOHIYHUX KBa3i-reoe3nIHnX BiIoOparKeHb PEKYPEHTHO-
mapaboJIiTHIX TTPOCTOPIB. 3 1T TIOTIOMOTOI0 JIOBEJIEHI OCHOBHI TEOPEME TEOPil KAHOHITHUX KBa3i-Te0Ie3nTHIX
Bi0OpazkeHb PEKypPEHTHO-apabOITHAX TPOCTOPIB, SKi JAI0TH 3MOTY 15 Oy Ib-sIKOT'O TICEBI0-PIMaHOBOTO
npocropy (Vy, gij, Fih) 3 PEKypPEeHTHO-1apabo iaHOI0 ahiHOPHOIO CTPYKTYPOIO OJHO3HATHO BiITOBiCTH
Ha MMUTAHHS, JOIMYCKAE BiH PO3IJIsiTyBaHe BioOparKeHHs UM Hi.

JlaJti pos3rsTHyTO KaHOHIYHE KBa3i-reo/le3nvdHe BiJoOpaKeHHs PeKypPEHTHO-TIapabOIiTHOTO TPOCTOPY
(Vas 9ij, Ff”) Ha [IOJIyCUMEeTPUIHUI mpocTip V ,, oT:ke Te3op Pimana V,, 3a/10Bo/bHSIE YMOBaM

Rishim] = 0.
ne |7 - 3HaK KoBapiaHTHOI TIOXiqHOT B V).
Hosenena

Teopema 1. Axwo pexypenmmo-napaborivriut npocmip (Vn,gij, th) donycrae Hempusiasvre KaHOHG-
yHe K6a3i-2e00e3udHe 61000PpaANCeHHA HA NOAYCUMEMPUYHUT V ), MO BUKOHYEMBCA NPUHATMHT 00HaA 3
ymoe: @; j = ali; — piq; abo Rij“ = bF};, npu desxux ineaianmar a,b.
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T'eomeTpig HaAOIMIKEHHI JIJIA IPOCTO adigHol 3B’93HOCTI
il y

ITokace Cepriit MuxaiijoBud4
(Opecekuit HamjonambHuil yHiBepcurer imeni 1. I. Meununkosa, Omeca, Ykpaina)
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E-mail: nickolaychuck@stud.onu.edu.ua

Posrisinemo npocrip adinnol 38’sa300CTi 6€3 CKpyTy Ay, BiAHECEHUH 10 JOBIIBHOI CUCTEMU KOOPIH-
nar {r', 22 ... 2"}, 3 06’eKTOM 3B’A3HOCTI FZ(ac), My(zh) — dbikcosana Touka mporo mpoctopy. Io-
OyyemMo HOBUIT TpocTip A;,, BiHECEHUN IO KOOPIAMHAT {yl, Y2, ... ,y"}, 31 cBOIM 06’€KTOM 3B’s13HOCTI

=h . ..
I (y), aKuit 3a/1a€Thes CIIBBIHOMIEH M

~ 1
FZ(y) = _7Rh(”)l yl7 e Rh{]l = Rzgl(MU) (1)

Axmo cucrema KoopgmHaT y BEXiJHOMY TpocTOpi A, € KaHOHIYHOIO 3 modaTkoM y Todri My, To
00’€KT 3B’A3HOCTI F peastizye HAOJIMKEHHSI [EPINOTrO MOPSAJIKY JIJIst F BUXIJJHOT'O IIPOCTOPY 1 TOMY
Bimobpaxkae I‘eOMeTpI/I‘{Hl BJIACTUBOCT] A, 3 JIeIKUM CTYII€HEM TOYHOCTI [17 4].

BuBUaoTHCsI JIesIKi BIACTHBOCTI IpocTopy Ap,. 30KpeMa, I0BEJIEHO, 10 CHCTEMa KOODIUHAT
{y*, 9%, ...,9y"} € pimanoBoro 3 ouaTkoM y Touti M.

Hagnani posrisimaorbes aHamiTudHi iHdiHiTe3UMAaIbHI pyXU B TPOCTOPI A,

Y =yl + & (y) 6t, ne E"(y)— Bekrop 3mimenms. (2)

KommonenTn BexTopa, " (y ) IIyKAIOThCS Y BUIJIS/II CTEIIEHEBUX PSIJIiB.

Sy =a +Za =a +Za1112 1Y Yy oy e ah,(IZZQ.“lk*KOHCTaHTI/I. (3)

IIpn nocminkeHHI OCHOBHHUX DiBHSIHB [2, 3]

5 o2éh L orh  pée., e DEN
LT (y) = — « Ih+ =Tk — =T =0 4
13 ’L](y> Gylayﬂ +€ aya ay aj + ay] at 83/ ( )
y sIBHOMY BUIJISI/l 3HAHUEHO BEKTOP éh (y)
= ( a® (k)h
Zk' k1) e e (5)
k=0
t’i _ 1 7 t(p)l — t(p—l)ita ( _ 2 3 ) (6)
j*gohlgﬂ/y i la i P=29..)

JoBeiena abcoJrroTHA Ta PiBHOMipHA 30iKHICTD IUX PSIB Yy JesiKiit obracTi. BuBuaeTbest muTanHs Ipo
opsi/IoK Tpymu JIi po3rIsSHYTHX PYXiB.
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Hocnimpkyoun Maiizke konrakTai muorosuan, K.Auo, C.Xoy i B.Hen [1] aiiinuin g0 nousTTs x6a-
dpucmpyxmypu, cTpyKTypHuil adinop skoi 3a10BosbHsE piBHAHHIO ¢F + ¢? = 0.
.. . . . x5 -  T=h
Mu Busuaemo 3F-mmanapni Bigobpazkenns [2| ncesno-pimanosux npocropis (Vy,, gij, FMNi(V,, 9ij» Fi)
3 adiHOPHOIO CTPYKTYPOIO TEBHOTO BUIY, OCHOBHI DIiHSIHHS SIKMX B 3arajbHiil 3a BiIoOparKeHHSIM CH-
creMi KoopauHaT (z') MalOTh BUTJISI:

3 s
T (x) = Th(a) + > 4 () Fl (),
s=0

e
o 1 2 1 1 3 9 1 s jh
Fz’h = 5?7 Fih = Fih7 Fz'h = FiaF£7 Fih = FiaFo}fy th(x) =F; (z),
—h . . - ] ) s . .
F?j’ I';; - KoMmonenTn 06’eriB 38’a3n0CTi V,, i Vi, Bianosiano; ¢;(x) - aesixi kosexropn; F' - acinop;

<,>, < | > - 3HaKM KoBapiaHTHOI NOXinHOI B V}, i V.
Mu j10BesIH, MO 32 TAKUX YMOB Ha adinop mpocropu Vi, i V, € JTOKaIbHO 3BEJEHUME i MAIOTh BUTJISL
JIO0Y TKY
Vo=V X Vo, Vo=V X Va_n,
JI0 TOrO K HA KOMIIOHEHTaX IIoro jo6yTKy 3F-mamapre Bino6paskenmus f : Vi, — V,, inaykye F-
nranape Bizobpaskenna [3] f1 @ Vi, — V,, mapaboniuno kemeposux mpoctopis [3] i F-mmamapme
BimobpakeHHst fo : Vi — Vn_m EJIITUIHO KeJEPOBUX IIPOCTOPIB [3]
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O. A. IloBapoBa
(Harmjonanbuuit rexuiunmii kaisepeurer Ykpainn «KuiBcbKuil mosirexHiaauit iHCTUTYT
im. I. Cikopcbkoroy», Kuie, Ykpaina)
E-mail: olena_sivak@ukr.net

Posrnsmaersesa cucrema HemHiHUX Pi3HUIIEBO-DYHKIIOHAIBHAX PIBHSIHD BUTJISITY
x(qt) = Az (t) + f (L2 (t+ 1)), (1)

y BHUIIQJIKY, KOJII BUKOHYIOTHCsI HACTYIIHI yMOBH:
(1) A - niiicra (n x n)-marpuig Burisiny A = diag (A1, A2), ne A1, Ao - nificui (p X p) Ta (r X r)-
marpuii (p+7r=mn), det A #0. f: R x R” — R",
fzt+1)=(fr(tat (t+1),22(+1)), f2(t,a* (t+1),22 (t+1))), q- esika niiicua
L 2%) — L (3 32)
z

N0oJIaTHA, CTaJIa.
)
fZ(’:El’:EQ)_fZ(t’ 1 2) g’

(2)
ne ly,ly - geski pogarHi crasd, mo 3amexars Big [(lp =13 (1) ,lo = 2 (1),l; — 0,lp — 0 upu [ — 0).
Toxi cucrema piBasHb (1) 3anumieTsest y BUMTIAIL

{ z!(qt) = Mzt (¢) + fL (L2t (t+1),2% (t+1)), @)
2% (qt) = Aox® (t) + f2 (6,2 (¢ + 1), 2% (¢ + 1)),

2
2

1
1

2
2

T —2

T

_|_
_|_

-7
-7

SURSI

)
3 §l2 -

Sllg

e z! = (3317 ...,mp)’ 22 = (xp-‘rlv --'axp-i-r)v fl = (flv "'?fp)’ f2 = (fp-l—la '"7fp+?“)'

Borgan ®emenko, [09.05.2022 15:04] Bukonasmmm B (2) B3a€MHO-OJHO3HAYHY 3aMiHy 3MIHHIX

v (t) =y (t) +7 (1),
T2 (t) = ya2 (t) + 2 (1),

e vy (t) = (7 (), (t)) - mHenepepBHUil 0OMezKeHUIT PO3B’A30K cucreMu (2), OTPUMAEMO CHCTEMY DiB-
HSIHD
v (gt) = My () + FL (g (E41) 02 (E+ 1)), 3)
y® (qt) = Aay® (1) + F2 (t,y' (t+1), 97 (t+ 1))
Bekrop-dyukmii F' (t, Y, y2)  F? (t, yl, y2) 3a,10BO/TBHAIOTE YMOBi 2. 1 F! (£,0,0) = 0, F2 (£,0,0) = 0.
Hnst cucremu (3) 70BeieHa HACTYIIHA TEOPEMA.
Teopema. Hezatli suxonyromuvea ymoeu 1-2 i ymoeu:
30<N<1l<N,i=1,2,...p,j=p+12,..n,0<p<n,qg>1;
4.0 :max{lzlj\*, Aflzl} <1, 0e1> N >max{\,i=1,....p}, 1 <A <min{\,i=p+1,...,n}

Todi cucmema piehsans (8) mae cim’ro nenepepsruz obmescerux nput > T > 0 (T - deaxa docmamnvo
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seaukra dodamna cmaaa) pos3e’askie y euzasdi padie
oo (o)
ORI HOREGES IR}
i=0 i=0

ae yi(t), y2(t), i = 0,1, ... - deari nenepepeni obmestceni nput > T > 0 eexmop-dynruii.
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Mu Busuaemo F-mianapHi BijoGpazkeHHst (1ICeBI0-)pIMAHOBHX [IPOCTOPIB 3 aiHOPHOIO CTPYKTYPOIO
nesHoro tuiy ([2]).

B pimanosomy mpocropi (Vy,, gij) adinop th BU3HAYAE CUMILIEKTHYIHY cTpyKTypy([3]), sikmio mosie
Tensopa tuity (0,2)  Fyj = F*ga; 3a/10B0/IbHsAE yMOBaM:

Fijr+ Fjri+ Frij =0, Fy+F; =0, Fj=Fga, |F'l#0,

Jle  3HaK KOBapiaHTHOI MOXiTHOI B TPOCTOPi Si,.

Mpgb1 obupaemMo CTPYyKTypy OITBIN 3arajbHOTO THUITY, BiIMOBJISIIOUNCH BiJi BUMOTU HEBUPOXKJIEHOCTI
adinopa. Byjemo Hazuparu i1 matiorce cumniexmuynoro, a (IICeBIo-)piMaHOBUIT TPOCTIP 3 TAKOK CTPY-
KTYPOIO - MAUHCE CUMNAEKMULHUM.

Jaui mu gociimkyemo F-nutanapHi Bijo6paskenHs mceBno-piManoux mnpoctopis Vi, i V,, B mpuiry-
menni, uro acdinop F BusHAuae Maiizke CHMILIEKTHYHY CTPYKTYpy Ha Vi, i V. Ix ocHoBHi piBmsHHS

MalOTb BHUIVIA

T () = Tl (@) + ()0l () + o (@) Fli (),

h . I .
I‘?j - KoMIoHeHTH 06’ekTiB 3B’ a3u0CT V4 1 Vi, ¥4, 05 - meski xkoBekTopu. loBemena

ae I’ ij
Teopema 1. Maiowce cumnaexmuwnuts npocmip (Vy,, gij) donyckae nempusianvre F-naanapre 6i0-
obpasicerna modi © MIALKY MOodi, KO 6 HbOMY ICHYE HEOCODAUGUT CUMEMPUNHUT MENHZOP Q;j MUNY

(0,2), axut 3a0060avHA€ UPEPEHUTANOHUM DIBHAHHAM
T Lo 1 1
aijk = —Paky gjk — Pa i gi — PiFjk — P Fik,
Eaaaj = _F]qa'ai
npu dearomy eexmopi PL; # 0.

Jauti 3a J0IOMOroIO a;; MH OTPUMYeMO ineapianmue nepemeopenna(|4]) , sike mapy maiixke chm-
IIEKTUIHUX TTPOCTOPIB, IO 3HAXOAATHCSI B HETPUBiaIbHOMY F-TIIaHaApPHOMY BiloOpaskeHHi, epeTBo-
PIOE B HOBY mapy Maii’ke CUMILIEKTUIHUX [IPOCTOPIB, 110 TAKOXK 3HAXOJAThCS B HeTpUBUAJbHOMY F-
IJTAHAPHOMY BioOparkeHHi, ajte Bijmosimaodomy iHmomMy adiHopy:

1 @17F1i
( )-

F(gaga SD’F) : (Sn'ﬂgn) — Sn—>

3aBIgKU MHOMY 3 'ABUJIACA MOXKJIMBICTH OTPUMAHHS BEJIUKOI KUIBKOCTI MPUKJIAIIB ap MaiizKe CrM-
IJIEKTUYHUX [IPOCTOPIB, sIKi 3HaX0JAThcd B F-nmanapaomy BimobparkeHHi.
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