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Abstract: Through of the concept of curvature energy, and the curvature theory on homogeneous spaces is designed and 

constructed an electronic sensor prototype to measure curvature in 2, and 3-dimensional spaces using the programming of shape 

operators in micro-controllers and the value of their energy integrals along the curves and geodesics in their principal directions. 

The curvature obtained under the sensor device is their spectral curvature given in voltage in 2- and 3-dimensions and their 

perception of curvature through electronic signals on a curved surface is the curvature energy that is detected in the displacement 

of an accelerometer on the curved surface. 

Keywords: Curvature Energy, Energy Spectrum of Curvature, Gaussian Curvature, Principal Curvatures,  
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1. Introduction 

In the study of the field observables are of major 

importance from a point of view of their geometry, the 

curvature and torsion of a space affected for a field
1
, which 

are the geometrical invariant that defines their shape and 

orientation. 

In our design analysis, we will consider like model of 

curvature, the obtained one by the Gaussian curvature, which 

involves from the mathematical point of view, curvatures 

along geodesic, curves on surfaces and space, sections of 

curved surfaces and bodies in the space, considering the 

design of an operator of shape based at the beginning in the 

geometry of the sphere 2S . Likewise, the value of certain 

integrals on cycles (invariant classes of the space
2
) and 

                                                             

1For example the gravitational field that produces a geometrical scenery in the 

space-time affecting to this by the only presence of the matter. Likewise, their 

curvature is the field observable deduced by the curvature tensor of the 

corresponding field equation of Einstein.  

2 For example, circles to the −2 sphere, horocycles to a hyperbolic disc, planes 
to Euclidean space, etc., where can be evaluate the integrals of lines, surfaces, or 

 

considering the case of −2 surfaces, on which is measured 

the curvature through the two principal directions 

representing these two values, as the maximum and minimal 

value of curvature of the surface determining their shape [1], 

can be established the curvature interval ,21 kkk ≤≤ [1], on 

which we design the programming of our sensor. This obeys 

to a question of design of the sensor, and also of the space 

perception of the controller on the accelerometer device, 

which must to use a modulation space with a domineering 

energy condition given by [1-7]: 

2

2 2 2 2 2

0

1
[ ] ( ) ( ) ,

2C

C

V hk ds h k ds AV k d

π

θ θ≥ − ≥∫ ∫ ∫     (1) 

where V,  is the applied potential energy of curvature
3
, A , 

                                                                                                        

curves. For example, the integrals ∫
1

,

S

ω  on circles to a −2 sphere.  

3  This potential energy of curvature could be represented in an electronic 

applications as voltage. The integral expression is a censorship of curvature 

condition which is a Hilbert inequality as given in (1).  
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is the area of the surface and ,h  their mean curvature and 

the last integral correspond to the curvature energy employed 

to measure the roundness in their displacement to along of 

two principal directions. 

Through certain studies of the models of Gaussian and 

normal curvatures to determine by Hilbert inequality their 

curvature energy, we can on certain bound of roundness 

obtained through of the implementation of the spherical 

operator (spherizer [7, 8])
4
, 

2( ) ( , ) ,
K

d Hom M Sγ= Ω∫O
E             (2) 

use the idea of the Radon transform to determine through 

cycles and their co-cycles the curvature of the surface or 

body having the Hessian of the −2 fundamental form ,Ω  

of the shape operator as a fundamental part of a censorship 

when we consider functions that are −2 differentiable 

functions in the corresponding principal directions. 

The development of research in theory of curvature in 

homogeneous spaces [8], has established that the measure of 

curvature can be obtained as an extrinsic curvature of the 

space classes (cycles) which have a curvature measure well 

defined. From a point of view of the signals and system 

analysis the utilization of these cycles could be translated in 

the context of the Fourier analysis in the application of 

energy pulses ),,( yxπ [7] that can reproduce in the infinitum 

the measure the curvature through of their energy spectrum 

(see the figure 1).  

 

 

Fig. 1. The shape of a2-surface (hyperbolic paraboloid or “ride chair”) is 
determined through energy Gaussian pulses [9]. Remember that the 

curvature is the more important geometrical invariant that determines the 

shape of a space. 

                                                             

4  Integral operator that involves a spherical map in the sphere 
.2S

 The 

spherizer will be very useful in our design of sensor device as superior bound of the 

factor of gravity considered in the design of our accelerometer. Likewise, 

.8)4(1)1(2 222 ππ =××−=EO  

These cycles must be invariant under translations and 

rotations
5
, to use them as symmetrical patrons in electronics 

and photonics of the energy signals that we want consignee 

in curvature information. Likewise, considering the curvature 

as a fundamental −2 form whose representation in a Hilbert 

space (energy space) is given by ,)(~ υfgΛ  

,),( ∧∈∈∀ KV ζζυ and ),/( KGCf c

∞∈ 6
 (theorem (F. 

Bulnes) [8-10]) we have that:  

( ), ( ( )), ,
g gK
f f V f

ζ
ζ∧∈

< Λ >= < Λ >⊕
ɶ ɶ       (3) 

which is an “energy” representation of curvature. This permit 

us generalize the idea of the curvature as field observable to a 

level of their energy, having the concept of curvature energy, 

that is to say, the domineering energy in the action of the 

field on a curved space [11] to displace a particle on said 

space (see the figure 2). 

                                                             

5  The Gaussian pulses ,
22 yx

ez
−−= are invariant under rotations and 

translations. Indeed, applying the Fourier transform we have: 
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Completing the square in the argument of exp integrant, we have that the last 

expression of the double integral takes the form: 
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If we call ,
2

u
j

x =+ ω
then ,dxdu = where 
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Newly, completing the square of the argument of )},(exp{ 2

2 yjy ω+−
we have that: 
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which is also a Gaussian pulse. �  

6  ,~g is the pseudo-Riemannian metric in ,/ KG induced of the 

pseudo-Riemannian metric of the manifold .M  
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Fig. 2. The curvature energy is the unit of energy that a device perceives in 

their movement. The curvature is the spectrum of energy of the surface 

incurving. 

Of fact, this idea is consigned, to the case of solid state 

electronics, in the first curvature sensor prototypes published 

in [7], with the application of the censorship given by (1) and 

followed after in the research of field curvature and torsion to 

quantum gravity [11-14] to the prospective of a sensor of 

quantum gravity. Also with this idea were designed other 

devices of photonics and opto-electronics nature considering 

light waves in the detection and measurement of curvature 

[15- 17]. In this sense, is published a result with applications 

in opto-electronics and photonics in [17]: 

Theorem (F. Bulnes) 1. 1. [17, 18]. The Radon transform of 

the Gaussian curvature whose detection condition is the 

inequality (censorship
7
): 

( )
2 2

2 2[log ( ( ))] log ( ) (1 log ) 4 ,t tφ ξ σ π  ≥ Ω − ∇ Ω ≥ Ω  ∫ ∫ ∫   (4) 

and using the signals the curvature measured by light beam, 

is: 

                                                             

7 Theoretical sensor of curvature in presence of the incurve and detected by a wave 

of light [17, 18].  

1

2

2
( , , ) ( ( )) ,

h
L

D

K L K t dxdy
R

ζ
φ σ• =∫∫ ∫∫     (5) 

Proof. [17, 18]. 

A design and construction of a sensor device needs the 

recognition on the part of the accelerometer of the property 

of roundness of a surface or body (see the figure 3), their 

perception of this roundness from the point of view of the 

signals of the sensor that the accelerometer will involve in 

their advance (displacement), and their aptitude to cause 

information in real-time, according to this perception as 

curvature of the surface or body (reading of the sensor). Then 

we want the following theorem [7]:  

 

Fig. 3. Measuring curvature through their energy using Gaussian pulses as 

cycles. The different space curved parts can be measured using the adequate 

Gaussian pulse. 

Proposition (F. Bulnes, I. Isaías, O. Zamudio, G. Negrete) 

1. 1. To the −1 dimensional image of a Gaussian pulse, the 

advance of the accelerometer must be proportional to the 

length from 0 to the intersection of the straight line of 

equation p=ω with the Gaussian pulse. Then an energy 

co-cycle (in the Radon space
8
) is that, whose energy area is: 

2

( ) 2 ,pA p eπ −=                   (6) 

Proof. We consider the projection of the 2-dimensional 

Gaussian pulse ),,( 21 ωωπ on the −ΩΩ 21
plane, that is to 

say, the pulse .)(
2

4

1 ω
πωπ

−
= e  We consider a cycle given 

by the line ,p=ω intersecting the pulse as can see it in the 

                                                             

8 The Radon space is the space determined for the corresponding Radon 

transform of the object space where the special distribution of some 

physical property is defined.  



 Science Journal of Circuits, Systems and Signal Processing 2015; 4(5): 41-54 44 

 

figure 4. Then .0=φ Then the co-took or co-cycle required 

is such that 

)7(,
),(

)0,(ˆ
p

pA
p

∂
∂= φπ

 

But the area ),( pA under de Gaussian pulse and the line 

,p=ω comes given as: 

)8(),(erf)(
0

4

1 2

pdxepA

p
x

πππ == ∫
−

 

But by (7) we have 
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−=
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∂=

∂
∂ πππ

 

where ),(2 επ CL=  to a maximum circle ,εC of the sphere 

of radius 1=ε , [7] which bounds the length of arc of the 

Gaussian pulse in the measurement of curvature in the 

surface in one direction (see the figure 3). �  

Then considering the voltages of output of our 

accelerometer device as the produced by the displacements 

when is considered the length of perception in a Gaussian 

pulse in the space (given for the length p ) we can to define 

the sensoring advance of the accelerometer on surface (see 

the figure 4).  

 

 

Fig. 4. Sensoring advance of the accelerometer on surface and their energy 

co-cycles. 

2. Development and Construction of the 

Electronic Sensor Prototype of 

Curvature. Optimization of the 

Curvature Sensor 

2.1. Design and Fabrication of the Electronic Board of 

Micro-controller Pic16F877A Obeying the Gauging of 

Inter-phases with Accelerometer Actions 

As has been demonstrated in the theorem page 120, [7], the 

fabrication of our microcontroller must to be designed and 

gauged accord to the accelerometer actions, that is to say, the 

detected curvature energy data (given in voltages) must to be 

interpreted by the microcontroller in outputs of principal 

curvatures considering the two principal directions of the 

tangent space on surface that varies. The axis ,Z must to be 

interpreted as −g cell factor in the monitoring action through 

cycles of energy (pulses) obtained when is varied the height in 

the displacement of our accelerometer (see the figure 5). 

Although also, in this −Z direction the output voltage in the 

sense strictly of the micro-controller is a principal curvature if 

we consider the theorem established in [7].  

 

Fig. 5. Curved surface of equation ,6 22 yxz −−= and their tangent 

plane at point (1, 2, 1). The principal curvatures ,1k and ,2k are 

measured in the canonical directions ,1e and .2e Due to the symmetry of 

the surface, could be measured through principal curvatures in other 

directions .ne  This freedom will permit that our sensor can be displaced in 

any direction. 

This design gives opportunity of to create an air version of 

this curvature sensor where can be used the Z-direction 

voltage output (see the figure 6). This variation of height can 

be considered as variation of the normal vector to the tangent 

plane, establishing through of the direction variation speed 

their normal curvature ),(uk  where ),()( uuSuk p= where 

,u is an unitary tangent vector to a surface M (see the figure 

6). )(uS p
, is the shape operator depending the unitary 

normal field ),( pU in a neighborhood of .Mp ∈ This will 

be of importance to define cycles of certain “length” inside of 

this neighborhood to the displacement perception of the 

accelerometer which will must to consignee spatial 

variations in curvature energy, this last in the 

micro-controller. 

To this goal, were realized settings in the recorded 

programming in the micro-controller to the sensitivity of our 

accelerometer to that their displacement could be calibrated 

in the neighborhood established by the shape operator )(uS p
, 

and with it could be implemented the accelerometer sensored 

reaction our, with the displacement to can realize the 

measurements while our device is in movement. These 

settings consist in an electronic plate or board of 

micro-controller fabricated in laboratory considering a 

ceramic board of Siliceous with nodes aligned to constant 

distribution of charge annulling the decreasing of potential to 
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electronic elements [2-4, 7]. 

 

Fig. 6. Unitary normal field is reproduced by the height variation in the 

surface relieve by the air version of the curvature sensor, when the 
accelerometer is installed in a drone. In this case, we have that in a convex 

surface we have ),0()( NpU −= then ,0)( <uk and concave surface 

),0()( NpU = where ),0(N the reflected normal field is in the initial 

change of direction then ,0)( >uk and detected by our sensor. In the case 

of terrestrial sensor, the field ),( pU is characterized by the gravity field. 

 

A) 

 

B) 

Fig. 7. A). Design in PCB Wizard to printed circuit of the electronic board 

of the accelerometer MMA7361. B). Design in PCB Wizard to printed circuit 

of the electronic plate of the micro-controlled PIC16F877A, and feeding 

,5V  CD to the devices. 

We need to design and construct an optimal electronic 

board in the accelerometer, whose voltage output data must 

be more exact and that responses with the displacement, not 

only when is in without movement (to future researches we 

want to implement an autonomous movement system of the 

accelerometer with certain velocity). To these goals in short 

and long terms, was modified the printed circuit to the 

electronic board, obtaining measurements in positive and 

negative voltages depending of the orientation and doing 

possible the exact measurements during their movement (see 

the figure 7) [15, 20, 21]. 

 

Fig. 8. Complete set of sensor curvature device of solid state. 

2.2. Displacement Perception Condition 

We have obtained a displacement perception condition of 

curvature given by the “curvature length” [7] (see the figure 

9): 

)10(,sin)(
0

∑==
N

irklong θκ
 

and that establishes a majoring condition of displacement to 

curvature sensor to the obtaining of mean measures of 

curvature in an energy space. Likewise, this majoring obeys 

to the result: 

Proposition (F. Bulnes, I. Isaías, O. Zamudio, G. Negrete) 

2. 1. The perception advances of curvature of the sensor 

though of the accelerometer must to satisfy to the sphere of 

radius ,ε  and sphered by operator EO , in a measured 

surface by the sensor that 

)11(),()( εκγ CLL ≤≤
 

We can to apply the inequality ),()( γε LCL ≥ [7] and 

establish that the superior extreme given in the inequality (11) 

is a condition of curvature energy of majored curvature given 

on a geodesic ,γ of our cycle through their length
9
 (arc 

                                                             

9 Proof of the Proposition 2. 1. If we suppose that ,1η and ,2η are a pair sensor 

fields commuting in M (that is to say 01221 =− ηηηη  [7]). Each of these 

fields generates a one-parameter group of diffeomorphisms in a neighborhood of a 

point on which is situated the accelerometer .z  

If we consider the parallel transports ,tXτ and ,tYτ respectively, along the 

flows of ,1η and ,2η for time t . Parallel transport of a vector ,ETz∈υ around 

the quadrilateral with sides ,.,, tXtYtYtX −− is given by 

υττττ tYsXtYsX

11 −−
. 
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This measures the failure of parallel transport to return Z to its original position in 

the tangent space .ET z
 That is to say there is “obstacle” in this surface that 

generates deviations. Shrinking the loop by sending 0, →ts  (to two limits as 

(13)) gives the infinitesimal description of the following deviation, which finally 
define curvature [8]:  

,),()( 21],[

0

11

211221
υηηυ

υττττ

ηηηηηη R

dt

d

ds

d
tstYsXtYsX

=∇−∇∇−∇∇

===
−−

 

where ,R  is the Riemann curvature tensor. This tensor belongs to the space 

,2℘Ω where ,℘ is the curvature perception zone equal to the tangent space 

.ET z  

For other way, given ,)( ℘∈ ηηυ T in M , we consider the curved arcs of curves 

family ),,( ηγ st with ,bta ≤≤ ,M∈η and ),,( λλ−∈s such that are 

satisfied the conditions of maximally in length )()( γLsL ≥ . Then the length 

function required in our experimentation (see figure 9) ),(sL ),,( λλ−∈∀ s

comply to this curved arcs family of the field sensor and using the fact 

),,()( 0 a
s

ηηγηυ
∂
∂= we have ,)()(

0=







=
S

SL
ds

d
dL γυ where ),(υdL is 

explicitly expressing the mean of ,υ and their covariant derivatives. This 

definition of ),(υdL  has the advantages to be independent of the choice of the 

family ),( ηγ st  . We need to demonstrate that curve arcs ,sγ are geodesics, 

that is to say, the minimal trajectories in the space-time M , created by the sensor 

fields in .sγ Thus must to comply the minimal energy consumption established in 

minimal energy principle. But ,sγ is geodesic if and only if ,0)( =υdL  

.ETz∈∀υ But this means that the geodesics belonging to M , (to the space in 

question) are precisely the critical points of ,L on .E  Using the Hessian of ,L in a 

geodesic ,Es ∈γ we have the index form to ,υ is [3]: 

,)(),(

0

2

2

=








=

S

SL
ds

d
I γυυ  

We consider the lifting of the mapping ss γη ֏),( to the mapping 

),(),(],[: MOba →−× λλγ  

where ),(MO is the bundle of orthonormal frames over M , such that 

).,()),(( sts γηγπ =  Let ,1η and ,2η vector fields in the spherical curve 

arc ),,(],[ λλ−×ba defined by ,, 21
ts ∂

∂=
∂
∂= ηη  

We consider the forms ,, ωθ and ,Ω the canonical, connection and curvature 

forms on ),(MO respectively. Then we can define the forms *,*, ωθ and 

*,Ω on the rectangle by 

,)(**),(**),(** Ω=Ω== γωγωθγθ  

Then in particular if we consider the pullback corresponding to the canonical form 

,θ  we have by definition [1, 8]  

))),((()(* 1

1

1 ηθυθηυθ η
−= d  

Defining the function  

,)}(*),(*{ 2/1

11 ηυθηυθ=F  

so that, at each ),,(],[),( λλ−×∈ bast ),,( stF is the length of the 

vector .)(

,1

s

tηυ Then the length ),( SL γ of curve arc will be 

,),()(
],[ 0

∫=
a

dsstFL S

ηη

γ
 

Then their variation is ).(ηυ  

Remember that ,|p and ,2p are connected by minimal trajectories, and the 

functions ,: PE →µ and ,: PE →ν (where })({ ηυ=∈= pMpP ) 

the two homotopic equivalences given in the diagrams of [1] where we can have  

)),(,())(,(:* ηνπηµπφ ST →  

 

piece of Gaussian pulse proposition 1. 1). Here ,κ is 

curvature length implemented by (10) [7]. In the next section 

the sensor field ,η (which has three enters as vector field 

)(),(),(( 321 ththth )), will be characterized by the 

transference function ),(th  calculated through capacitance 

voltages of the electronic characteristics of sensor in the three 

directions of the accelerometer.  

 

Fig. 9. Length function considered in our experimentation according (10) 

signed by adhesive tape.  

The corresponding block diagram to −ε data to the 

equation (10) is the following: 

↑→

↓→

→→→↓

→

→→
∑

)(

interphace  and  ADC)()(

)(

       

     

    )12(,
2

1

nV

rVV

Vr

θ

θθ

θ

�

���

��

�

�

⋮⋮⋮

 

where the voltage outputs are given in the principal 

directions to a hypothetical accelerometer with sensor 

property in a −n dimensional space. 

Then we can give the corresponding programming 

electronic design of the complete system of the 

microcontroller using the Master Prog recorder which was 

written in the Ram memory of the microcontroller 

PIC16F877A (see the figure 10).  

                                                                                                        

which is an isomorphism. Then the variation of the length is given for

).()),((
],[ 21

ηυδ
ηη

=∫ dsstF
Then we re-written this integral through ,∗φ  as: 

)),((*)),((
)](),([

ηυθφδ
ηνηµ

=∫ ∗ dsstF
 

which proves that κγ ≤)(L . 

The other side of inequality (11) is proved under arguments of Gaussian and mean 

curvatures on surface using the same argument of length measures. 
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Fig. 10. Complete system of Microcontroller. 

2.3. Experiments 

The data will be observed and registered through of 

,LCD screen, verifying that the conversions in curvature 

energy are realized correctly in the outputs of the 

accelerometer ).,,( zyx  The ,LCD screen is divided of 

such form that are observed the conversion in the axis YX ,

and ,Z  the curvature energy in voltage outputs.  

The electronic circuit of the curvature sensor was 

developed in proto-board to realize the simulating of physical 

manner and can to observe the analogic-digital conversion 

through a digital accelerometer ,7361MMA (with the 

pertinent modifications to detection of curvature) and the 

microchip microcontroller PIC16F877A (also with certain 

modifications to their optimal functioning). Also is added a 

LCD 18X2 to viewing of the A/D conversion in a 3D-space 

(axis YX , and Z ). 

 
A) 

 

B) 

Fig. 11. Initial position in a flat part of the experimentation 2-dimensional 

surface to the gauging of the sensor. B). 

The first step is to observe the values through a flat 

surface are limiting to a 5V conversion as maximum, to 

gauging effects of our sensing and their dependency of 

displacement (see the figure 11 A)). This produce us a 

sensitive platform in the sensor to obtaining of exact 

measures starting in a flat space which without curvature 

must to give 0 in their screen led (see the figure 11 B)). 

However, and due the physical conditions the sensor start 

with little deviation of order 0.0000025 (sensitivity at 

typical conditions divided for 1.5g-cell of the accelerometer 

at typical conditions). 

We can to view the voltages in the three axis in different 

position in our LCD screen (see the figure 12). 

The statistical data are considered to a short trajectory as 

showed in the figure 12 (see the values table I). The values 

increase in −X direction and −Z direction due to that the 

surface is concave. In the −Y direction the curvature softy 

increases. The sensor perceive the curvature through the 

different values of voltage outputs in their displacement on 

a curved surface (see the table I, with the figure 13). Their 

mean curvature is soft elevation in oblique position. 

 

 

Fig. 12. Experimental proofs and rehearsals were realized in an amorphous 

surface in tha work table of the GI-TESCHA. 
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Fig. 13. Experimental sensing of curvature obtained through the voltage 

outputs to displacements in centimeters.  

Table I. Experimental Measurements made by the curvature sensor device. 

Axis/Voltages      

Centimeters 
XV  

YV  
ZV  Average 

0X  0.3 0.2 0.5 0.72 

5.0X  0.2 0.2 0.5 0.72 

1X  0.3 0.3 0.5 0.82 

5.1X  0.3 0.3 0.5 0.82 

2X  0.3 0.4 0.5 0.92 

5.2X  0.3 0.4 0.5 0.82 

3X  0.3 0.5 0.5 1.02 

5.3X  0.3 0.6 0.4 1.12 

4X  0.3 0.7 0.4 1.22 

5.4X  0.3 0.8 0.4 1.32 

5X  0.3 0.9 0.35 1.42 

5.5X  0.3 0.9 0.3 1.42 

6X  0.6 1 0.3 1.42 

5.6X  0.15 1 0.3 1.32 

7X  0.2 1 0.3 1.42 

5.7X  0.2 1.1 0.3 1.52 

Note: Proofs and rehearsals realized to 18°C. 

Mechanical Limitations: Size of the electronic board to measurements more 

precise, Design of basis to tangent vector. 

During the displacement of the accelerometer in an 

amorphous surface is can to visualize in the led of the LCD, 

that the measures are realized of the speed and continuous 

form, we realizing of that the modifications in the 

configuration of the accelerometer MMA7361, are correct 

and efficient, thanks to the use of Gaussian pulses of high 

efficiency as has been demonstrated in the propositions 1. 1, 

and 2. 1. 

3. Spectral Curvature 

The detection and measurement of the curvature is realized 

using the value of the integrals of a field interacting on the 

geometric pattern along their surface doing it on signals of 

finite energy defined in the proposition 1. 1, and that they 

will code the information of curvature in a spectral space 

))),((( 2 MH ΩL (curvature energy) with ,M a −2

dimensional space [20]; through of the signals given in the 

frequency established in our detector device that detects and 

measures curvature. 

If ,sX is the electromagnetic field of EDMC/CURVE 

device (sensor field
10

) then we use the Radon transform such 

and as was mentioned in the theorem 1. 1, with the 

corresponding Hessian to calculate the curvature of a region 

,S of .M But this region is the energy region of the rays of 

light used to determine the measure of curvature with 

constant electromagnetic fields. This agrees with the 

Gaussian curvature, which use an identification of the sphere 

of dimension four [17] and solutions through of the use of the 

operator ,MAXL and that can be obtained by the formula [7]: 

)13(,det,)( g

M

Dg

M

DD VolFVolFFgAd ∫∫ =><=κ
 

where ,DF is the corresponding Maxwell field required to 

the bundle of light of the connection D . To our very 

particular case (dimension two) our spectral Gaussian 

curvature will be: 

)14( ))},,((),( 221 y xfσωωκ R{hessF=
 

where to a Gaussian pulse ,
22

yxez −−= as cycle
11

, the Radon 

transform is 
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with ),()),(()),((
22

yxedppdS −−= φπδφπ is the 

corresponding Dirac measure of the pulse defining their 

metric. Then their curvature measure by Gaussian pulses will 

be in the space: 
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Considering the tempered distribution [22, 23] ),,(ˆ φpf

                                                             

10  ,sX is a sensor field (field that measures the curvature through the 

manifesting if their energy to the detect said variations of changes of direction) then 

through the spectrum to obtain the measure as field observable taking the sensor 

field ,sX as reference. 
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we have
12

 

)17(,),(),(
)(

21
2211 φφκωωκ ωω

dpdep
ttj

M

+−
∫=

 

which is our spectra of curvature to a measure realized by our 

accelerometer in an instant .t  

What happen in the electronic characterizing of our 

sensor? 

4. Transitory Analysis of Response and 

Border Condition to C , and C
V , to the 

Co-Cycles of Curvature Energy 

We establish a linear model of response in voltage outputs 

of the sensor displacement as was explained in the 

sub-section 2. 2, which obeys to a differential equation of 

−RC type. We consider the following Kirchhoff law: 

)18(,21 EVVV =+  

having that for each circuit element of the −RC circuit with 

variable capacitor, the equivalent voltage is null: 

)19(,0=−
C

I

dt

dI
R

 

The solution to the differential equation given by (19) is: 

)20(,)(

1
t

RCetI λ=  

The response (output) time of our accelerometer in the 

curvature sensoring is csms 2.02 ≈=τ . We have a 

parameter depending of ,R and ,C to that relates the 

electronic part with their geometrical representation given by 

the Gaussian pulses that are co-cycles of curvature energy to 

conform our spectral curvature of the measured space [7, 2].  

If our co-cycles are of the form )(
2

2
2

1
2 ωωα
π

−− he , then 

we need determine the parameter ),,( CRh  [6] which must 

to come from a transitory analysis of response of our 

accelerometer
13

. 

                                                             

12 
.),(ˆ),(

)(

21
2211 φφωωκ ωω

dpdepf
ttj

M

+−
∫= hess

Observe the analogy with 

the formula (13). 

13 For other side, geometrically, the sensor relations between voltage outputs and 

displacement of the accelerometer in the space. Likewise if we consider a 

displacement in one direction, for example in the −X axis, then could to have a 

differential equation of type:  

,)(
)(

EVxxV
dt

xdV =+  

whose solutions in function of displacement are 
.

2
)(

0

2

dtexV

x

t

∫
−=

π
Then the 

variation of this voltage respect to the displacement is 22
)( xexV

dx

d −=
π

, 

that is to say, the space is understanding through Gaussian pulses. Enters of the 

Hessian matrix must be curvature spectra of these pulses (see the figure 15).  

We consider the differential equation to inputs and outputs 

system: 

)21(,Cin V
dt

dV
RCV +=

 

where we have the transference function: 
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Applying ,1−
L we have the dynamic solution of the 

system ,0tt ≥∀  
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1
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But considering that there exist a reference voltage 

,Ref βθ=V
14

that affects the obtaining of voltage of the 

capacitance ,C  we have that 

,cininout VVRCVVV −=−=  where , is given by 

the system: 

)24(,
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where 
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which constitutes the electronic characterizing of the 

Gaussian pulse (co-cycle) having the 95% free of noise when 

is considered a pulse .
2

),( )(

21

2
2

2
1 ωωα

π
ωωπ −−= he  

Table II. Additional Physical and Operating Characteristics of Our 

Accelerometer and Curvature Sensor. 

Symbol Physical Characteristic Solutions and Ranges 

CV  Transitory Voltage due to 

Capacitance 
t

RC

inC eVV







−
=

1

 

inV
 

Voltage Input coutin VVV −=
 

τ  
Response Time of 
Capacitance Voltage 

sRC 002.0≈=τ  

C  Capacitance 

dVVdQVC /)()( =

dtti
V

C
C

∫=
τ

0

)(
1  

R  Resistance IVR in /=  

EO  Spherical Sensitivity 
,dim4 Mπ

)4(1)1(2
22 π××−=EO

 

Q  Charge 
t

RCE
t

RC e
CR

V
etQ

1

2

1

)( += α  
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= −
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y
Arcθ  
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Symbol Physical Characteristic Solutions and Ranges 

h  
Geometrical-Electronic 

Parameter 
dsesH

j
th st

∫
+∞

∞−

= )(
2

1
)(

π
 

β  Parameter of Capacitance 

Sensitivity to Curvature 
θβ /RefV=  

DDout VV ,  Output Voltage 

,50 ≤≤ V

,6.32.2 ≤≤ DDV V,

)(erf5)( xxV out =  

RefV  Reference Voltage βθ=RefV  

maxV
 

Maximum Voltage in 

operating 
5max =V ,

 

θ  Angle of Deviation 






= −

x

y
Arc 1tanθ  

g  gravity  

V  Supply Voltage ,/ CQV = –0.3 to +3.6 

stgT  Storage Temperature –40 to +125 C�  

sS
 

Sensitivity with response time ±0.002s 

I
 

Supply Current AIA µµ 600400 ≤≤  

*From the differential equation .
1

EVQ
Cdt

dQ
R =+  

 

 

Fig. 14. Bode diagram of Band-with curves (phase and magnitude) of ,CV

versus frequency the response analysis in frequency of our capacitance 

voltage. We observe that the noise in the device is very little. The used 

parameters are to the first transference function >>num=1; and to the 

second transference function are >> den=[3 1]; >> bode(num,den) 

num=1/3; >> den=[1 1/3]; >> bode(num,den). 

Our curvature sensor operates in a range of voltage until 

,5V permitting exact detections of curvature by the 

accelerometer with outputs given by ).(erf5)( xxV =  

 

Fig. 15. Theoretical solution )(erf5)( xxV = . The negative part must be 

interpreted to space zones whose curvature is negative. 

5. Units 

We consider now, the diverse aspects of dimensionality of 

operating and physical operating conditions (see the table 2), 

as also approximations through non-harmonic analysis to the 

study the energy cycles using cylindrical functions in their 

re-construction. This last analysis helps to understand the 

interacting of physical space of the system and their cycles 

approximating the space, in this case the shape of the space. 

Likewise, considering the Fourier transform of the Gaussian 

pulse ),,( yxπ  to the obtaining in their spectral space (and 

with an appropriated polar transformation) we have: 

)26(,),(
~

2

0

)}cos(2{

0

2

θτσ
π

ϕθπ deref iqrr

∫∫
−−

∞
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with ,cos ϕσ q= and .sin ϕτ q= The integral over ,θ that 

is to say, which depends of ,RefV which depends of 

capacitance ,C is given by the function ),2(2 0 qrJ ππ where 

,0J is the Bessel function of order zero. The remaining 

integral of this Bessel function is a Hankel transform of order 

zero. Then (26) takes the form: 

)27(,)2(2),(
~ 222
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qr edrqrJref ππππτσ −
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− == ∫
 

In this step we have that the phase of our Gaussian pulse in 

the spectral space is a Bessel function, that to our sensor 

system we have ,3.0=q and .2.0=r to the phase voltage 

.θV  

Finally involving the physical space, we have: 

)28(,),(ˆ
222

2 pqpiiq edqeepf −
∞
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Fig. 16. Approximation through Bessel functions of the Gaussian pulses 

under regime of voltage produced by the capacitance 

).2.0,3.0(Bessel xV =θ
 

The physical properties of operating of our sensor function 

with the phase defined to our voltage
CV , given by Bessel 

functions that determine the variable modus of operating of 

the capacitor can be seen in the Table II. This phase involves 

the voltage ,3.0 DDV for one side and for other side .2.0 RefV  

6. Applications 

6.1. Advanced Studies in Curvature as Field Observable: 

2-Dimensional Curvature Model through Hyperbolic 

Waves 

An application to aero-spatial technology presented and 

published in the year 2002-2003 [18, 19], using the spectral 

model of curvature given in (17) according with the physical 

concept of curvature energy [7] to a 2-dimensional 

representation of curvature as tempered distribution of the 

space-time, using the 2-dimensional hyperbolic model of the 

space-time as hyperbolic disc and cycles given by hyperbolic 

waves is the spectral curvature: 
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whereU , is the step function in the horocycle, ),,( bzξ
),,(

~
bf µ is the hyperbolic Fourier transform in the same 

horocycle. The spectral curvature obtained in the plane 

(using the multi-physics modelling) comes given by the 

figures 17 and 18: 

 

Fig. 17. Line spectra of curvature to the 2-dimensional hyperbolic model of 

space-time. Observe the long infra-red spectra according with the 

conclusions of the expansion of the Universe. 

 

Fig. 18. The term },,exp{ ><− azµ in the spectral curvature (29). This 

is proportional to the exponential decay given in the solution in the sensor 

device to the supply current }./exp{ RCt
R

V
i −=  

6.2. Invisibility of Objects 

In certain transitory process of the light refraction effects 

produced for certain materials and their optics mechanisms 

the curvature can be fundamental to produce invisibility 

effects in an object, where certain curvature energy spilled in 

an object is diffracted, producing an effect of invisibility 

apparent, which is a deviation of the light that permits to 

observe the objects in their colors and details.  

Of a more precise manage we can affirm that the effect is 

produced due to that the light field can be curved through of 

certain curvature energy that have the properties of curve the 

light, at least for the presence of some of the atoms of the 

certain materials that compose the object, producing an effect 

of curvature in the light, which generate an apparent 

invisibility (similar to like in the eclipses, although by 

distinct reasons, since in this last is due to the gravity). 

6.3. Applications to Fine Movements and Control of Drones 

The movement of drones to special mission are required 

with major precision and fine flight attitude of the drone in 

remote control can be optimized with the help of the 

curvature sensor which can establish in the drone a change of 

patterns of flight interpreting through curvature as smoothed 

movements and the object approximation as obstacle to the 

field sensor doing to vary the flux of their energy in their 

accelerometer. 

A concrete application is to control a cup drone designed 

as helicopter to realize work of vigilance in a building in 

construction (see the figure 19). 
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Fig. 19. Drone used to cup works in a building in construction where the 

drone has that to have a high precision of flight and quickly response in the 

monitoring of the building, likewise as capacity to recognize the material 

existence in the building. 

7. Conclusions 

The electronic prototype of solid state presented in this 

research has been developed through the curvature energy 

considering that in physical level, the perception of the 

curvature in the space has that to be given in terms of an 

electronic characteristic that has a relation with the 

geometrical enthrone where the direction change speed of 

the space due to the existence of curvature is established 

and perceived through of change of sensor field and their 

flux on the surface where is realized the measure. 

Considering that the Gaussian curvature can be 

approximated through the electronic pulses, these as special 

functions which are invariant under transformations of the 

space and their electrical characteristics, is constructed the 

curvature energy version of the Gaussian curvature and the 

mean curvatures using the principal curvatures as tempered 

functions whose spectra is an element of the space 

))),((( 2 MH ΩL where the transference function implicit to 

the system, ),(sH establish the relation of displacement 

with the system outputs in function of a −RC
characterizing on the circuits where variable regime of 

capacitance will produce the sensor effect wanted. Then the 

voltage due the capacitance is ,

1

0

t
RC

C eVV
−

= with the 

bordering conditions 
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These aspects can be majored under the use of certain 

semi-conductor materials that can to produce in the circuit of 

micro-controller low impedance to requirement of control in 

resonance by frequencies, for example in the accelerometer 

[5, 21]. Also the requirement of current to the feeding of 

Micro-controller. 

This prototype of curvature sensor is the first of many 

others that will be obtained under the same philosophy and 

principles on curvature energy where we want to establish a 

sensoring of the space through their energy, considering that 

the space and time are unified in an energy enveloping in all 

levels of measurement through their pure energy. 

Sub-sequence prototypes will be realized under electronics 

technologies versions with the goal of measure curvature and 

torsion as field observable and not as simple characteristics 

of the space. This last and after of many developments of 

sensor prototypes and as finally prototype will be designed 

under the same principle, curvature energy; a curvature and 

torsion sensor that has the work of measure the field 

interactions as particles that deform the space and time and to 

obtain a curvature sensor to detect and measure quantum 

gravity. To this case could be developed a SOIC-type circuit 

integrated in the micro-controller. 

In the way, the applications will be much and diverse, for 

example, applications in MEMS developments and 

nano-materials, non-symmetrical fields technology, particles 

interferometers, special mimetic and optical effects devices, 

optimal control of drones, distributed generation considering 

the curvature to the design of special surfaces and tunnels, 

etc; and new metrologies.  

Also we could to be obtained, under this same philosophy, 

applications in medicine, since curvature energy could 

establish deviations of energy, puddles or jumps which can 

be re-interpreted under spectral curvature as sickness in the 

body. To it, we will need curvature sensors that measure 

change of energy under field observables. 
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Technical Notation 

−K  Curvature as general concept of roundness property. 

Also used in the paper as Gaussian curvature in a point  . 

−k  Gaussian curvature along of the geodesic or surface. 

−EO Spherical operator which is related with the spherical 

map. 

 Principal curvature in the principal ith-direction. In 

our research i = 1, 2, only. 

−V Voltage.  

 Area. 

– Space of spectral transformations on 

curvature forms given in space  

Space whose curvature is measured. In our study 

 represent dimensional surfaces or dimensional 

bodies. 

Dimensional sphere. Also is the 

dimensional sphere used in the spherical map to design our 

curvature sensor 

 – Evaluation of curvature radius from the product 

from their inverse principal curvatures. 

 Curvature form in the and dimensional 

spaces  

−− prJ ,1 Bessel function of first specie. 

−F Fourier transform.  

Bessel function of second specie. 

Small-outline integrated circuit. 

 Electromagnetic device to measure curvature 

−κ Curvature as value. 

−Gκ Gaussian curvature in the sense of the value of their 

integral. 

−),( φκ p Spectral curvature in the Radon space. 

−R Radon transform. 

−0J Bessel function of Zero order.  

−L Laplace Operator of Laplace transform. 

−),( 21 ωωκ Spectral curvature in the Fourier space. 

−MMA Aceelerometer type .MM  

−PIC Micro-controller type .PI  

−PI The PIC are a micro-controllers family of RISC type 

made by Microchip Technology Inc. and derived from 

PIC1650, originally developed by the micro-electronic 

technological firms. We use a .PIC16F877A  

−MM Micro-Machined. Free-scale Semiconductor’s 

micro-machined accelerometer (MMA) series acceleration 

sensors are designed for end products or embedded systems 

that require measurement of forces resulting from tilt, motion, 

positioning, shock or vibration. 

−LED  Light Emitting Diode. 

−LCD Liquid Crystal Display. 

−MEMS Micro-electromechanical systems. 

−SOIC Integrated sensor Micro-circuit. 

−  WizardPCB Program designed to create electronic 

circuits to the after the design print circuits to one or two faces. 
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